IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007827.html
   My bibliography  Save this article

The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China

Author

Listed:
  • Yu, Ziyue
  • Zhang, Fan
  • Gao, Chenzhen
  • Mangi, Eugenio
  • Ali, Cheshmehzangi

Abstract

Rational use of marginal land for cultivation of bioenergy crops is an effective means to solve land use competition and is an important way to reduce greenhouse gas (GHG) emissions and improve energy supply. This study conducted an evaluation of the suitability of marginal land for growing energy crops in China during 1990–2020 using the GIS and multi-factor analysis method and revealed the quantitative relationship between bioenergy produced by marginal land energy crops and carbon reduction potential. The Intergovernmental Panel on Climate Change (IPCC) coefficient method and life cycle method were applied to measure the biofuel yield of the Jatropha curcas and assessed its potential to offset agricultural greenhouse gas emissions. The findings are: (1) The marginal land area available for energy crops in 2020 is 1.63 × 106 km2, which is 8.35 % lower than the area planted in 1990. (2) When the reclamation index is 60 %, all suitable marginal land can be used to grow energy crops, and biofuels can replace 3.31 × 1011 tons of conventional energy. (3) In 2020, agricultural greenhouse gas emissions will be 9.02 × 108 tons, and the potential of bioenergy crop cultivation to offset agricultural greenhouse gas emissions amounts to 4.31 × 108 tons, or 47.88 %. In the future, the pressure of agricultural GHG emission reduction will be further exacerbated by population growth and agricultural land supply, etc. Rational use of marginal land and development of bioenergy crops are effective ways for China to cope with climate change and realize its renewable energy strategy.

Suggested Citation

  • Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007827
    DOI: 10.1016/j.rser.2023.113924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark D. Staples & Robert Malina & Steven R. H. Barrett, 2017. "The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels," Nature Energy, Nature, vol. 2(2), pages 1-8, February.
    2. Sheng, Yu & Song, Ligang, 2019. "Agricultural production and food consumption in China: A long-term projection," China Economic Review, Elsevier, vol. 53(C), pages 15-29.
    3. Robert H. Beach & Benjamin J. DeAngelo & Steven Rose & Changsheng Li & William Salas & Stephen J. DelGrosso, 2008. "Mitigation potential and costs for global agricultural greenhouse gas emissions-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 109-115, March.
    4. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    5. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    6. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    7. Zhao, Lili & Chang, Shiyan & Wang, Hailin & Zhang, Xiliang & Ou, Xunmin & Wang, Baiyu & Wu, Maorong, 2015. "Long-term projections of liquid biofuels in China: Uncertainties and potential benefits," Energy, Elsevier, vol. 83(C), pages 37-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Dan & Liu, Litao & Li, Jinkai & Wu, Jiaqian & Qin, Wei & Werners, Saskia E., 2021. "Are the planning targets of liquid biofuel development achievable in China under climate change?," Agricultural Systems, Elsevier, vol. 186(C).
    2. Amir Behzad Bazrgar & Aeryn Ng & Brent Coleman & Muhammad Waseem Ashiq & Andrew Gordon & Naresh Thevathasan, 2020. "Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    3. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    4. Liu, Jiangui & Huffman, Ted & Green, Melodie, 2018. "Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada," Land Use Policy, Elsevier, vol. 75(C), pages 33-42.
    5. Röder, Norbert & Henseler, Martin & Liebersbach, Horst & Kreins, Peter & Osterburg, Bernhard, 2014. "Evaluation of land use based greenhouse gas mitigation measures in Germany," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182674, European Association of Agricultural Economists.
    6. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    7. Yuanyuan Chen & Changhe Lu, 2019. "Future Grain Consumption Trends and Implications on Grain Security in China," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    8. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    9. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    10. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    11. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    12. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    13. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    14. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    15. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Vaillancourt, Kathleen & Bahn, Olivier & Levasseur, Annie, 2019. "The role of bioenergy in low-carbon energy transition scenarios: A case study for Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 24-34.
    17. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    18. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    19. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    20. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.