IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p2074-d1523551.html
   My bibliography  Save this article

Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China

Author

Listed:
  • Miaoling Bu

    (Law School, Shanxi University of Finance and Economics, 140 Wucheng Road, Xiaodian District, Taiyuan 030006, China)

  • Weiming Xi

    (Law School, Shanxi University of Finance and Economics, 140 Wucheng Road, Xiaodian District, Taiyuan 030006, China)

  • Yu Wang

    (Business School, Beijing Technology and Business University, Beijing 100048, China)

  • Guofeng Wang

    (Institute of Platform Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China)

Abstract

Agricultural land in China represents a major source of nitrous oxide (N 2 O) emissions, and as population growth and technological advancements drive agricultural intensification, these emissions are projected to increase. A thorough understanding of historical trends and future dynamics of these emissions is critical for formulating effective mitigation strategies and advancing progress toward the Sustainable Development Goals. This study quantifies N 2 O emissions across 31 provinces in China from 2000 to 2021, employing the IPCC coefficient method alongside China’s provincial greenhouse gas inventory guidelines. The spatiotemporal evolution of emission intensities was examined, with the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model employed to assess the influence of population, technological development, economic growth, and energy structure. The findings confirm that agricultural land remains the primary source of N 2 O emissions, with significantly higher levels observed in eastern coastal regions compared to western inland areas. Implementing targeted mitigation strategies, such as enhanced agricultural- and manure-management practices and region-specific interventions, is imperative to effectively curb the rising emission trends.

Suggested Citation

  • Miaoling Bu & Weiming Xi & Yu Wang & Guofeng Wang, 2024. "Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China," Agriculture, MDPI, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2074-:d:1523551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/2074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/2074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Frank & Petr Havlík & Elke Stehfest & Hans Meijl & Peter Witzke & Ignacio Pérez-Domínguez & Michiel Dijk & Jonathan C. Doelman & Thomas Fellmann & Jason F. L. Koopman & Andrzej Tabeau & Hugo Va, 2019. "Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target," Nature Climate Change, Nature, vol. 9(1), pages 66-72, January.
    2. Mary Sanford & James Painter & Taha Yasseri & Jamie Lorimer, 2021. "Controversy around climate change reports: a case study of Twitter responses to the 2019 IPCC report on land," Climatic Change, Springer, vol. 167(3), pages 1-25, August.
    3. R. L. Thompson & L. Lassaletta & P. K. Patra & C. Wilson & K. C. Wells & A. Gressent & E. N. Koffi & M. P. Chipperfield & W. Winiwarter & E. A. Davidson & H. Tian & J. G. Canadell, 2019. "Acceleration of global N2O emissions seen from two decades of atmospheric inversion," Nature Climate Change, Nature, vol. 9(12), pages 993-998, December.
    4. Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Jing Ning & Chunmei Zhang & Mingjun Hu & Tiancheng Sun, 2024. "Accounting for Greenhouse Gas Emissions in the Agricultural System of China Based on the Life Cycle Assessment Method," Sustainability, MDPI, vol. 16(6), pages 1-23, March.
    7. Dana Cătălina Popa & Yolanda Laurent & Răzvan Alexandru Popa & Adrian Pasat & Mihaela Bălănescu & Ekaterina Svertoka & Elena Narcisa Pogurschi & Livia Vidu & Monica Paula Marin, 2023. "A Platform for GHG Emissions Management in Mixed Farms," Agriculture, MDPI, vol. 14(1), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pruethsan Sutthichaimethee & Phayom Saraphirom & Chaiyan Junsiri, 2025. "Efficiency of National Governance in Managing Long-Term Greenhouse Gas Emission Reduction in the Agricultural Sector Towards the Thailand 5.0 Goal," Sustainability, MDPI, vol. 17(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eminente, Clara & Artime, Oriol & De Domenico, Manlio, 2022. "Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Jensbye, Laerke & Clora, Francesco & Yu, Wusheng, 2022. "Nationally determined contributions and scenarios of agricultural emission reductions at country level," Conference papers 333465, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Mary Sanford & Jamie Lorimer, 2022. "Veganuary and the vegan sausage (t)rolls: conflict and commercial engagement in online climate-diet discourse," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    4. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Hu, Yanan & Duan, Weili & Zou, Shan & Chen, Yaning & De Maeyer, Philippe & Van de Voorde, Tim & Takara, Kaoru & Kayumba, Patient Mindje & Kurban, Alishir & Goethals, Peter L.M., 2024. "Coupling coordination analysis of the water-food-energy‑carbon nexus for crop production in Central Asia," Applied Energy, Elsevier, vol. 369(C).
    6. Alves, Luís & Holz, Laura I.V. & Fernandes, Celina & Ribeirinha, Paulo & Mendes, Diogo & Fagg, Duncan P. & Mendes, Adélio, 2022. "A comprehensive review of NOx and N2O mitigation from industrial streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. James Painter & Suzie Marshall & Katherine Leitzell, 2024. "Communicating climate futures: a multi-country study of how the media portray the IPCC scenarios in the 2021/2 Working Group reports," Climatic Change, Springer, vol. 177(6), pages 1-23, June.
    8. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    9. Carl A. Latkin & Lauren Dayton & Abigail Winiker & Kennedy Countess & Zoé Mistrale Hendrickson, 2024. "‘They Talk about the Weather, but No One Does Anything about It’: A Mixed-Methods Study of Everyday Climate Change Conversations," IJERPH, MDPI, vol. 21(3), pages 1-19, February.
    10. Magda Monteiro & Marco Costa, 2023. "Change Point Detection by State Space Modeling of Long-Term Air Temperature Series in Europe," Stats, MDPI, vol. 6(1), pages 1-18, January.
    11. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    12. Gianpaolo Zammarchi & Maurizio Romano & Claudio Conversano, 2024. "Automatic Topic Title Assignment with Word Embedding," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 650-677, November.
    13. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    14. Sèna Donalde Dolorès Marguerite Déguénon & Richard Adade & Oscar Teka & Denis Worlanyo Aheto & Brice Sinsin, 2024. "Sea-level rise and flood mapping: a review of models for coastal management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2155-2178, February.
    15. Aurélien Saghaï & Grace Pold & Christopher M. Jones & Sara Hallin, 2023. "Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Duarte, Miguel & Holz, Laura I.V. & Fernandes, Celina & Ribeirinha, Paulo & Fagg, Duncan P. & Mendes, Adélio, 2024. "Modelling ammonia and nitrous oxide decomposition reactions in solid oxide fuel cells for combined energy generation and treatment of flue gas streams," Applied Energy, Elsevier, vol. 368(C).
    17. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2023. "Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 99-123, January.
    18. Xue, Haiteng & Wang, Gongda & Li, Xijian & Du, Feng, 2024. "Predictive combination model for CH4 separation and CO2 sequestration with CO2 injection into coal seams: VMD-STA-BiLSTM-ELM hybrid neural network modeling," Energy, Elsevier, vol. 313(C).
    19. Araceli Galiano-Coronil & Manuela Ortega-Gil & Belén Macías-Varela & Rafael Ravina-Ripoll, 2023. "An approach for analysing and segmenting messages about the SDGs on Twitter from the perspective of social marketing," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 20(3), pages 635-658, September.
    20. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2074-:d:1523551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.