IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2023i1p78-d1310963.html
   My bibliography  Save this article

A Platform for GHG Emissions Management in Mixed Farms

Author

Listed:
  • Dana Cătălina Popa

    (Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania)

  • Yolanda Laurent

    (R&D Department, BEIA Consult International, 041386 Bucharest, Romania)

  • Răzvan Alexandru Popa

    (Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania)

  • Adrian Pasat

    (R&D Department, BEIA Consult International, 041386 Bucharest, Romania)

  • Mihaela Bălănescu

    (R&D Department, BEIA Consult International, 041386 Bucharest, Romania)

  • Ekaterina Svertoka

    (R&D Department, BEIA Consult International, 041386 Bucharest, Romania)

  • Elena Narcisa Pogurschi

    (Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania)

  • Livia Vidu

    (Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania)

  • Monica Paula Marin

    (Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania)

Abstract

This research introduces an innovative platform designed to manage greenhouse gas (GHG) emissions in mixed farms. Emphasizing the urgent need to address GHG emissions, particularly methane (CH 4 ) and nitrous oxide (N 2 O), the platform targets mixed farming systems where the interplay of livestock and crop production significantly contributes to environmental impacts. Our methodology is grounded in comprehensive data collection, encompassing soil data, energy consumption, and detailed livestock information. Utilizing the Agricultural Internet of Things (AIoT), it facilitates real-time data acquisition and analysis, providing insights into various farm activities’ GHG emissions. This approach allows for precise monitoring and management of emissions from different sources, including enteric fermentation in livestock and fertilizer use in crop production. Results from the application show its effectiveness in offering a clear and interactive visualization of GHG emissions, aiding farmers in making informed decisions for sustainable farm management. The platform’s user management system, coupled with advanced data processing and visualization capabilities, underscores its potential as a vital tool for sustainable farming. Conclusively, Solution4Farming represents a significant advancement in digital agriculture, combining IoT technology with sustainable practices. Though initially designed for Romanian cattle farming, Solution4Farming’s anticipated expansion to various farming environments suggests a broader impact and relevance in sustainable agriculture.

Suggested Citation

  • Dana Cătălina Popa & Yolanda Laurent & Răzvan Alexandru Popa & Adrian Pasat & Mihaela Bălănescu & Ekaterina Svertoka & Elena Narcisa Pogurschi & Livia Vidu & Monica Paula Marin, 2023. "A Platform for GHG Emissions Management in Mixed Farms," Agriculture, MDPI, vol. 14(1), pages 1-25, December.
  • Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:78-:d:1310963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/78/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/78/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rose, David C. & Sutherland, William J. & Parker, Caroline & Lobley, Matt & Winter, Michael & Morris, Carol & Twining, Susan & Ffoulkes, Charles & Amano, Tatsuya & Dicks, Lynn V., 2016. "Decision support tools for agriculture: Towards effective design and delivery," Agricultural Systems, Elsevier, vol. 149(C), pages 165-174.
    2. Lundström, Christina & Lindblom, Jessica, 2018. "Considering farmers' situated knowledge of using agricultural decision support systems (AgriDSS) to Foster farming practices: The case of CropSAT," Agricultural Systems, Elsevier, vol. 159(C), pages 9-20.
    3. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    4. Evangelos Alexandropoulos & Vasileios Anestis & Federico Dragoni & Anja Hansen & Saoirse Cummins & Donal O’Brien & Barbara Amon & Thomas Bartzanas, 2023. "Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side," Sustainability, MDPI, vol. 15(17), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaoling Bu & Weiming Xi & Yu Wang & Guofeng Wang, 2024. "Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China," Agriculture, MDPI, vol. 14(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophia Xiaoxia Duan & Santoso Wibowo & Josephine Chong, 2021. "A Multicriteria Analysis Approach for Evaluating the Performance of Agriculture Decision Support Systems for Sustainable Agribusiness," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    2. Carlos F. Brunner-Parra & Luis A. Croquevielle-Rendic & Carlos A. Monardes-Concha & Bryan A. Urra-Calfuñir & Elbio L. Avanzini & Tomás Correa-Vial, 2022. "Web-Based Integer Programming Decision Support System for Walnut Processing Planning: The MeliFen Case," Agriculture, MDPI, vol. 12(3), pages 1-22, March.
    3. Evangelos Alexandropoulos & Vasileios Anestis & Federico Dragoni & Anja Hansen & Saoirse Cummins & Donal O’Brien & Barbara Amon & Thomas Bartzanas, 2023. "Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side," Sustainability, MDPI, vol. 15(17), pages 1-29, August.
    4. David Christian Rose & Anna Barkemeyer & Auvikki Boon & Catherine Price & Dannielle Roche, 2023. "The old, the new, or the old made new? Everyday counter-narratives of the so-called fourth agricultural revolution," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(2), pages 423-439, June.
    5. Ehlers, Melf-Hinrich & Huber, Robert & Finger, Robert, 2021. "Agricultural policy in the era of digitalisation," Food Policy, Elsevier, vol. 100(C).
    6. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    7. Cuihong Song & Jun-Jie Zhu & John L. Willis & Daniel P. Moore & Mark A. Zondlo & Zhiyong Jason Ren, 2024. "Oversimplification and misestimation of nitrous oxide emissions from wastewater treatment plants," Nature Sustainability, Nature, vol. 7(10), pages 1348-1358, October.
    8. McGrath, Karen & Brown, Claire & Regan, Áine & Russell, Tomás, 2023. "Investigating narratives and trends in digital agriculture: A scoping study of social and behavioural science studies," Agricultural Systems, Elsevier, vol. 207(C).
    9. Gary Bentrup & Michael G. Dosskey, 2022. "Tree Advisor: A Novel Woody Plant Selection Tool to Support Multifunctional Objectives," Land, MDPI, vol. 11(3), pages 1-23, March.
    10. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    11. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    12. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    13. Michael Friedrich Tröster, 2023. "Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
    14. Carof, Matthieu & Godinot, Olivier, 2018. "A free online tool to calculate three nitrogen-related indicators for farming systems," Agricultural Systems, Elsevier, vol. 162(C), pages 28-33.
    15. Jouan, Julia & Carof, Matthieu & Baccar, Rim & Bareille, Nathalie & Bastian, Suzanne & Brogna, Delphine & Burgio, Giovanni & Couvreur, Sébastien & Cupiał, Michał & Dufrêne, Marc & Dumont, Benjamin & G, 2021. "SEGAE: An online serious game to learn agroecology," Agricultural Systems, Elsevier, vol. 191(C).
    16. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    17. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Pedersen, Michael Friis & Gyldengren, Jacob Glerup & Pedersen, Søren Marcus & Diamantopoulos, Efstathios & Gislum, René & Styczen, Merete Elisabeth, 2021. "A simulation of variable rate nitrogen application in winter wheat with soil and sensor information - An economic feasibility study," Agricultural Systems, Elsevier, vol. 192(C).
    19. Kyle S. Herman, 2024. "Doomed to fail? A call to reform global climate governance and greenhouse gas inventories," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 24(2), pages 257-288, September.
    20. Rose, David C. & Sutherland, William J. & Barnes, Andrew P. & Borthwick, Fiona & Ffoulkes, Charles & Hall, Clare & Moorby, Jon M. & Nicholas-Davies, Phillipa & Twining, Susan & Dicks, Lynn V., 2019. "Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy," Land Use Policy, Elsevier, vol. 81(C), pages 834-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:78-:d:1310963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.