IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12193-d925637.html
   My bibliography  Save this article

Agriculture-Induced N 2 O Emissions and Reduction Strategies in China

Author

Listed:
  • Guofeng Wang

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China
    Think Tank for Eco-Civilization, Chinese Academy of Social Sciences, Beijing 102445, China)

  • Pu Liu

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Jinmiao Hu

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Fan Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Greenhouse gases are one of the most important factors in climate change, their emissions reduction is a global problem. Clarifying the spatial patterns of N 2 O, as an important component of greenhouse gases, it is of great significance. Based on the planting and breeding data of China from 2000 to 2019, this paper measures the N 2 O emissions of agricultural systems, and uses kernel density to explore the spatial distribution differences between the eight major economic zones. Finally, the proposed emissions reduction countermeasures are provided. The research results show that the N 2 O emissions of China’s agricultural system showed a trend of increasing first and then decreasing, and in 2019, the national N 2 O emissions were 710,300 tons, agricultural land emissions and animal husbandry emissions were the main sources of N 2 O emissions. The difference in N 2 O emissions by province was significant, the concentration trend was more prominent, and the differences of N 2 O emissions between provinces and regions were diverse. In order to achieve the reduction in N 2 O emissions, it is necessary to carry out low-carbon production of staple grains for different parts and economic zones, and focusing on low-carbon production in the Central Part and the West Part, as well as the Northeast and the Greater Southwest zones, is essential.

Suggested Citation

  • Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12193-:d:925637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    2. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyuan Liu & Nana Wang & Yanjun Wang & Ying Li & Yan Zhang & Gaoxiang Qi & Hongyun Dong & Hongcheng Wang & Xijin Zhang & Xinhua Li, 2024. "Inhibitory Effects of Biochar on N 2 O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    2. Min Liu & Yinrong Chen & Kun Chen & Yi Chen, 2023. "Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective," Sustainability, MDPI, vol. 15(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    2. Shanyun Wang & Bangrui Lan & Longbin Yu & Manyi Xiao & Liping Jiang & Yu Qin & Yucheng Jin & Yuting Zhou & Gawhar Armanbek & Jingchen Ma & Manting Wang & Mike S. M. Jetten & Hanqin Tian & Guibing Zhu , 2024. "Ammonium-derived nitrous oxide is a global source in streams," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Khatri-Chhetri, Arun & Sapkota, Tek B. & Maharjan, Sofina & Cheerakkollil Konath, Noufa & Shirsath, Paresh, 2023. "Agricultural emissions reduction potential by improving technical efficiency in crop production," Agricultural Systems, Elsevier, vol. 207(C).
    4. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    6. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    7. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    8. Stafford, William & Birch, Catherine & Etter, Hannes & Blanchard, Ryan & Mudavanhu, Shepherd & Angelstam, Per & Blignaut, James & Ferreira, Louwrens & Marais, Christo, 2017. "The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia," Ecosystem Services, Elsevier, vol. 27(PB), pages 193-202.
    9. Anik, Asif Reza & Eory, Vera & Begho, Toritseju & Rahman, Md. Mizanur, 2023. "Determinants of nitrogen use efficiency and gaseous emissions assessed from farm survey: A case of wheat in Bangladesh," Agricultural Systems, Elsevier, vol. 206(C).
    10. Francesco N. Tubiello & Josef Schmidhuber, 2014. "Emissions of greenhouse gases from agriculture and their mitigation," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 16, pages 422-442, Edward Elgar Publishing.
    11. Yuan Wang & Zhou Pan & Yue Li & Yaling Lu & Yiming Dong & Liying Ping, 2022. "Optimization of Emission Reduction Target in the Beijing–Tianjin–Hebei Region: An Atmospheric Transfer Coefficient Matrix Perspective," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    12. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    13. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    14. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Lin Shi & Xiaofei Shi & Fan Yang & Lixue Zhang, 2023. "Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    16. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    17. Dario Caro & Steven Davis & Simone Bastianoni & Ken Caldeira, 2014. "Global and regional trends in greenhouse gas emissions from livestock," Climatic Change, Springer, vol. 126(1), pages 203-216, September.
    18. Zhong, Jinmei & Song, Yaqi & Yang, Man & Wang, Wei & Li, Zhaohua & Zhao, Liya & Li, Kun & Wang, Ling, 2023. "Strong N2O uptake capacity of paddy soil under different water conditions," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    20. Gernot Pehnelt & Christoph Vietze, 2013. "Quo Vadis European Biofuel Policy: The Case of Rapeseed Biodiesel," Jena Economics Research Papers 2013-015, Friedrich-Schiller-University Jena.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12193-:d:925637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.