IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v19y2011i4p515-527.html
   My bibliography  Save this article

Analysis of intermodal freight from China to Indian Ocean: A goal programming approach

Author

Listed:
  • Yang, Xuejing
  • Low, Joyce M.W.
  • Tang, Loon Ching

Abstract

This paper presents an intermodal network optimization model to examine the competitiveness of 36 alternative routings for freight moving from China to and beyond Indian Ocean. The proposed model, which is built upon the principles of goal programming, is able to handle multiple and conflicting objective functions such as minimizing transportation cost, transit time and transit time variability while ensuring flow continuity and transit nodes compatibility among the rail, road, ocean vessel, airplane and inland waterway transports. Transportation time and cost obtained from comprehensive industry sources are then fed into the intermodal transport network connecting two important Chinese origins and four Indian destinations, from which the most attractive routes are identified. In addition, the paper investigates several non-dominated transportation cases through sensitivity analysis tests, and analyzes the potential competitiveness and possible influences of future route developments to current transportation patterns in Asia.

Suggested Citation

  • Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
  • Handle: RePEc:eee:jotrge:v:19:y:2011:i:4:p:515-527
    DOI: 10.1016/j.jtrangeo.2010.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692310000797
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2010.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    2. Macharis, Cathy & Pekin, Ethem, 2009. "Assessing policy measures for the stimulation of intermodal transport: a GIS-based policy analysis," Journal of Transport Geography, Elsevier, vol. 17(6), pages 500-508.
    3. Noland, Robert B. & Small, Kenneth A. & Koskenoja, Pia Maria & Chu, Xuehao, 1998. "Simulating travel reliability," Regional Science and Urban Economics, Elsevier, vol. 28(5), pages 535-564, September.
    4. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    5. Kang, Seungmo & Medina, Juan C. & Ouyang, Yanfeng, 2008. "Optimal operations of transportation fleet for unloading activities at container ports," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 970-984, December.
    6. Bookbinder, James H. & Fox, Neil S., 1998. "Intermodal routing of Canada-Mexico shipments under NAFTA," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(4), pages 289-303, December.
    7. Inmaculada Martinez-Zarzoso & Felicitas D. Nowak-Lehmann, 2007. "Is distance a good proxy for transport costs? The case of competing transport modes," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 16(3), pages 411-434.
    8. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    9. Caramia, M. & Guerriero, F., 2009. "A heuristic approach to long-haul freight transportation with multiple objective functions," Omega, Elsevier, vol. 37(3), pages 600-614, June.
    10. Wijeratne, Ajith B. & Turnquist, Mark A. & Mirchandani, Pitu B., 1993. "Multiobjective routing of hazardous materials in stochastic networks," European Journal of Operational Research, Elsevier, vol. 65(1), pages 33-43, February.
    11. Li, Baibing, 2009. "Markov models for Bayesian analysis about transit route origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 301-310, March.
    12. Modesti, Paola & Sciomachen, Anna, 1998. "A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 111(3), pages 495-508, December.
    13. Linda K. Nozick & George F. List & Mark A. Turnquist, 1997. "Integrated Routing and Scheduling in Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 31(3), pages 200-215, August.
    14. Chiang, Yu-Sheng & O. Roberts, Paul, 1980. "A note on transit time and reliability for regular-route trucking," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 59-65.
    15. Higginson, James K., 1993. "Modeling shipper costs in physical distribution analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 113-124, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zweers, Bernard G. & van der Mei, Rob D., 2022. "Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 178-188.
    2. Thi Yen Pham & Ki Young Kim & Gi-Tae YEO, 2018. "The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    3. Lam, Jasmine Siu Lee & Gu, Yimiao, 2016. "A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 266-274.
    4. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    5. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.
    6. Thi Yen Pham & Gi-Tae Yeo, 2018. "A Comparative Analysis Selecting the Transport Routes of Electronics Components from China to Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    7. Yi Zhao & Ronghui Liu & Xi Zhang & Anthony Whiteing, 2018. "A chance-constrained stochastic approach to intermodal container routing problems," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    8. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    9. Shou-feng Ji & Rong-juan Luo, 2017. "A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions," Sustainability, MDPI, vol. 9(7), pages 1-24, June.
    10. Nathathai Krebs, 2019. "Optimal Route in International Transportation of Thailand � Guangxi (China)," GATR Journals gjbssr527, Global Academy of Training and Research (GATR) Enterprise.
    11. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    12. Rajkovic Radoslav & Zrnic Nenad & Stakic Đorđe & Mahnic Borut, 2015. "The Costs of Container Transport Flow Between Far East and Serbia Using Different Liner Shipping Services," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 6(1), pages 34-40, November.
    13. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    2. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    3. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    4. Zweers, Bernard G. & van der Mei, Rob D., 2022. "Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 178-188.
    5. Häme, Lauri & Hakula, Harri, 2013. "Dynamic journeying under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(3), pages 455-471.
    6. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    7. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    8. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    9. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    11. Rahman, Ashrafur & Fiondella, Lance & Lownes, Nicholas E., 2014. "A Bi-Objective Approach to Evaluate Highway Routing and Regulatory Strategies for Hazardous Materials Transportation," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).
    12. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    13. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    14. Ishfaq, Rafay & Sox, Charles R., 2011. "Hub location-allocation in intermodal logistic networks," European Journal of Operational Research, Elsevier, vol. 210(2), pages 213-230, April.
    15. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    16. repec:pcz:journl:v:6:y:2012:i:1:p:57-62 is not listed on IDEAS
    17. Prakash, A. Arun, 2018. "Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 127-147.
    18. Andrew Ensor & Felipe Lillo, 2016. "Colored-Edge Graph Approach for the Modeling of Multimodal Transportation Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(01), pages 1-21, February.
    19. Androutsopoulos, Konstantinos N. & Zografos, Konstantinos G., 2009. "Solving the multi-criteria time-dependent routing and scheduling problem in a multimodal fixed scheduled network," European Journal of Operational Research, Elsevier, vol. 192(1), pages 18-28, January.
    20. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    21. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:19:y:2011:i:4:p:515-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.