IDEAS home Printed from https://ideas.repec.org/p/gtr/gatrjs/gjbssr527.html
   My bibliography  Save this paper

Optimal Route in International Transportation of Thailand � Guangxi (China)

Author

Listed:
  • Nathathai Krebs

    (School of Logistics and Supply Chain, Naresuan University, Thailand Author-2-Name: Boonsub Panichakarn Author-2-Workplace-Name: School of Logistics and Supply Chain, Naresuan University, Thailand Author-3-Name: Author-3-Workplace-Name: Author-4-Name: Author-4-Workplace-Name: Author-5-Name: Author-5-Workplace-Name: Author-6-Name: Author-6-Workplace-Name: Author-7-Name: Author-7-Workplace-Name: Author-8-Name: Author-8-Workplace-Name:)

Abstract

Objective - This study examines the selection of international transportation routes from Thailand to Guangxi Zhuang Autonomous Region (Guangxi), People's Republic of China. Guangxi has been designated a significant role as the gateway to ASEAN and has several land borders and seaports connecting to countries in ASEAN. Methodology/Technique - In this work, we studied 6 connecting routes, 3 of which are road routes, namely routes R8, R9, and R12 and 3 other multimodal (road-sea) routes operating from/to Laemchabang port and Nanning of Guangxi, route through Haiphong port of Vietnam, route through Qinzhou port of China, and route through Guangzhou port of China. We analysed the data using the Cost/Time Distance Model, in combination with surveys and in-depth interviews, to investigate the limitations and benefits of each route. Findings - Base on costs in 2017, we found that sea routes have much lower costs than the land routes in general; the lowest cost is route through Qinzhou port. On the other hand, the time used in transportation is much shorter for the land routes; the shortest route is the R12 route. Furthermore, in terms of limitations and benefits, we found that the Qinzhou route has many limitations such as long custom processes for fruit and agricultural products and no backhaul cargo. Meanwhile, the limitations for route R8 include crossing Mekong river on truck ferries and the presence of very steep mountain roads in the Lao People's Democratic Republic. Route R12 winds down the mountain both in Vietnam and Laos, whereas route R9 is advantageous; most of that route has a flat terrain and is operated under the Cross-Border Transport Agreement (CBTA). The route through Haiphong port is also advantageous with a direct highway from Haiphong to Hanoi of Vietnam. In conclusion, it is suggested that road transportation is more efficient than sea transportation. Novelty - Further consideration among road routes and, with emphasis on costs and time, the best route is then route R12. However, if one is concerned with risk of damage to products, then route R9 is the best. The optimal route from Thailand to Guangxi depends on the conditions and decision criteria of the stakeholders.

Suggested Citation

  • Nathathai Krebs, 2019. "Optimal Route in International Transportation of Thailand � Guangxi (China)," GATR Journals gjbssr527, Global Academy of Training and Research (GATR) Enterprise.
  • Handle: RePEc:gtr:gatrjs:gjbssr527
    as

    Download full text from publisher

    File URL: http://gatrenterprise.com/GATRJournals/pdf_files/GJBSSR%20Vol%207(1)%202019/5.Nathathai%20Krebs.pdf
    Download Restriction: http://gatrenterprise.com/GATRJournals/online_submission.html
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
    2. Burak Ayar & Hande Yaman, 2012. "An intermodal multicommodity routing problem with scheduled services," Computational Optimization and Applications, Springer, vol. 53(1), pages 131-153, September.
    3. Janic, Milan, 2008. "An assessment of the performance of the European long intermodal freight trains (LIFTS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1326-1339, December.
    4. Kengpol, Athakorn & Meethom, Warapoj & Tuominen, Markku, 2012. "The development of a decision support system in multimodal transportation routing within Greater Mekong sub-region countries," International Journal of Production Economics, Elsevier, vol. 140(2), pages 691-701.
    5. Liu, Xiaoyun & Xin, Xian, 2011. "Transportation uncertainty and international trade," Transport Policy, Elsevier, vol. 18(1), pages 156-162, January.
    6. Bookbinder, James H. & Fox, Neil S., 1998. "Intermodal routing of Canada-Mexico shipments under NAFTA," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(4), pages 289-303, December.
    7. Tong, Tingting & Yu, T. Edward, 2018. "Transportation and economic growth in China: A heterogeneous panel cointegration and causality analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 120-130.
    8. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Yi Zhao & Ronghui Liu & Xi Zhang & Anthony Whiteing, 2018. "A chance-constrained stochastic approach to intermodal container routing problems," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    3. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    4. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    5. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    6. Yan Sun & Xinya Li, 2019. "Fuzzy Programming Approaches for Modeling a Customer-Centred Freight Routing Problem in the Road-Rail Intermodal Hub-and-Spoke Network with Fuzzy Soft Time Windows and Multiple Sources of Time Uncerta," Mathematics, MDPI, vol. 7(8), pages 1-40, August.
    7. Thi Yen Pham & Ki Young Kim & Gi-Tae YEO, 2018. "The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    8. Thi Yen Pham & Gi-Tae Yeo, 2018. "A Comparative Analysis Selecting the Transport Routes of Electronics Components from China to Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    9. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    10. Aalok Kumar & Ramesh Anbanandam, 2020. "A Flexible Policy Framework for Analysing Multimodal Freight Transportation System in India: SAP–LAP and Efficient IRP Method," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 35-52, March.
    11. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    12. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.
    13. Shou-feng Ji & Rong-juan Luo, 2017. "A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions," Sustainability, MDPI, vol. 9(7), pages 1-24, June.
    14. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    15. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    16. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    17. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    18. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    19. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    20. Harris, Irina & Wang, Yingli & Wang, Haiyang, 2015. "ICT in multimodal transport and technological trends: Unleashing potential for the future," International Journal of Production Economics, Elsevier, vol. 159(C), pages 88-103.

    More about this item

    Keywords

    International Transportation; Multimodal Transportation; Cost/time Distance Model; Guangxi (China); Road Transportation; Sea Transportation.;
    All these keywords.

    JEL classification:

    • F02 - International Economics - - General - - - International Economic Order and Integration
    • F10 - International Economics - - Trade - - - General
    • F19 - International Economics - - Trade - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gtr:gatrjs:gjbssr527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Prof. Dr. Abd Rahim Mohamad (email available below). General contact details of provider: http://gatrenterprise.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.