IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1519-d322090.html
   My bibliography  Save this article

Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation

Author

Listed:
  • Jiahao Zhao

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaoning Zhu

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Li Wang

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

Abstract

It has been proven that exploring how to achieve an efficient transportation system is a crucial component of every sustainable transportation study. Rail-water intermodal transportation is recognized as one of the future transportation methods for being efficient, economical and environmentally friendly. To improve the efficiency, reduce transportation costs and maximize the resource utilization of outbound intermodal container transportation, based on the relationship between the container central station and the port station in the actual problems, the organization of railway container transportation was studied. A multi-objective optimization model was established in order to minimize the total cost in the process of transportation, which means maximizing the resource utilization and ensuring it is environmentally friendly. Additionally, an improved genetic algorithm (GA) was developed to solve the model. The calculation results of the model are obtained by the simulation calculation. The comparison with the conventional fixed axis transportation organization method proves that the model and algorithm can reduce costs by up to 24.57%. The result also shows that the container transport organization should be tried to satisfy the direct loading and discharging condition of “train-ship,” meanwhile reducing the storage time at the high toll central station. In conclusion, the model and algorithm are feasible and effective. Due to the universality of the model, it can be easily used and generalized in or out of China.

Suggested Citation

  • Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1519-:d:322090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    2. Hartmann, Sönke, 2013. "Scheduling reefer mechanics at container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 17-27.
    3. Limbourg, S. & Jourquin, B., 2009. "Optimal rail-road container terminal locations on the European network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 551-563, July.
    4. Alexandra M. Newman & Candace Arai Yano, 2000. "Scheduling Direct and Indirect Trains and Containers in an Intermodal Setting," Transportation Science, INFORMS, vol. 34(3), pages 256-270, August.
    5. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    6. Janic, Milan, 2008. "An assessment of the performance of the European long intermodal freight trains (LIFTS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1326-1339, December.
    7. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    8. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    9. Kuo, April & Miller-Hooks, Elise & Mahmassani, Hani S., 2010. "Freight train scheduling with elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1057-1070, November.
    10. Ziliaskopoulos, Athanasios & Wardell, Whitney, 2000. "An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays," European Journal of Operational Research, Elsevier, vol. 125(3), pages 486-502, September.
    11. Reis, Vasco & Fabian Meier, J. & Pace, Giuseppe & Palacin, Roberto, 2013. "Rail and multi-modal transport," Research in Transportation Economics, Elsevier, vol. 41(1), pages 17-30.
    12. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    13. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    14. Gelareh, Shahin & Nickel, Stefan & Pisinger, David, 2010. "Liner shipping hub network design in a competitive environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 991-1004, November.
    15. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    16. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    17. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    18. Mu, Shi & Dessouky, Maged, 2011. "Scheduling freight trains traveling on complex networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1103-1123, August.
    19. Bock, Stefan, 2010. "Real-time control of freight forwarder transportation networks by integrating multimodal transport chains," European Journal of Operational Research, Elsevier, vol. 200(3), pages 733-746, February.
    20. Sun, Jiasen & Li, Guo & Xu, Su Xiu & Dai, Wei, 2019. "Intermodal transportation service procurement with transaction costs under belt and road initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 31-48.
    21. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    22. Giusti, Riccardo & Manerba, Daniele & Bruno, Giorgio & Tadei, Roberto, 2019. "Synchromodal logistics: An overview of critical success factors, enabling technologies, and open research issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 92-110.
    23. Cao, Chengxuan & Gao, Ziyou & Li, Keping, 2012. "Capacity allocation problem with random demands for the rail container carrier," European Journal of Operational Research, Elsevier, vol. 217(1), pages 214-221.
    24. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.
    25. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    26. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    2. Aldona Jarašūnienė & Kristina Čižiūnienė, 2021. "Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    3. Yuee Gao & Xin Zou & Rujia Chen & Yanli Ma & Chengjiang Li & Yaping Zhang, 2020. "Freight Mode Coordination in China: From the Perspective of Regional Differences," Sustainability, MDPI, vol. 12(7), pages 1-24, April.
    4. Wennan Song & Di Liu & Wenyu Rong, 2022. "Optimization of Passenger-like Container Train Running Plan Considering Empty Container Dispatch," Sustainability, MDPI, vol. 14(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    2. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    3. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    5. Sina Mohri, Seyed & Thompson, Russell, 2022. "Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 59-77.
    6. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    7. W. J. A. Heeswijk & M. R. K. Mes & J. M. J. Schutten & W. H. M. Zijm, 2018. "Freight consolidation in intermodal networks with reloads," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 452-485, September.
    8. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    9. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    10. Fateme Fotuhi & Nathan Huynh, 2017. "Reliable Intermodal Freight Network Expansion with Demand Uncertainties and Network Disruptions," Networks and Spatial Economics, Springer, vol. 17(2), pages 405-433, June.
    11. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    12. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    13. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    14. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
    15. Johannes Rentschler & Ralf Elbert & Felix Weber, 2022. "Promoting Sustainability through Synchromodal Transportation: A Systematic Literature Review and Future Fields of Research," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    16. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. David Wolfinger & Fabien Tricoire & Karl F. Doerner, 2019. "A matheuristic for a multimodal long haul routing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 397-433, December.
    18. Bart Wiegmans & Behzad Behdani, 2018. "A review and analysis of the investment in, and cost structure of, intermodal rail terminals," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 33-51, January.
    19. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    20. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1519-:d:322090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.