IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i8p1043-1067.html
   My bibliography  Save this article

Parametric search and problem decomposition for approximating Pareto-optimal paths

Author

Listed:
  • Xie, Chi
  • Travis Waller, S.

Abstract

The multiobjective shortest path problem arises in many transportation and logistics applications, either as a stand-alone network routing problem or a subroutine of a more complex multiobjective network optimization problem. It has been addressed by different solution strategies, including labeling methods, ranking methods, constraint methods, and parametric methods. Increasing attention has been paid to parametric methods in recent years, partially because of its simple algorithmic logic and its flexibility of being used in different user-preference decision-making environments. The core idea of a parametric algorithm is scalarization, by which a multiobjective shortest path problem can be tackled by repeatedly solving a single-objective subproblem. However, existing parametric algorithms suffer two notorious deficiencies, which considerably limit its further applications: first, typical subroutines for the single-objective subproblem in general cannot capture nonextreme Pareto-optimal paths; second, parametric algorithms for biobjective problems cannot be directly extended to solving multiobjective problems. This paper provides some algorithmic improvements that can partially overcome these deficiencies. In particular, the contribution of this work is twofold: first, in the biobjective parametric solution framework, we propose an approximate label-setting algorithm for the parameterized, constrained single-objective subproblem, which is capable of identifying all extreme paths and a large percentage (i.e., 85–100%) of nonextreme paths; second, we suggest a general projection scheme that can decompose a multiobjective problem into a number of biobjective problems. The approximate parametric algorithm runs in polynomial time. The algorithmic design and solution performance of the algorithm for multiobjective shortest path problems are illustrated, and numerically evaluated and compared with a benchmark algorithm in terms of solution completeness and efficiency.

Suggested Citation

  • Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:8:p:1043-1067
    DOI: 10.1016/j.trb.2012.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261512000501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2012.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    2. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    3. Current, John & Marsh, Michael, 1993. "Multiobjective transportation network design and routing problems: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 65(1), pages 4-19, February.
    4. Fruhwirth, B. & Bukkard, R. E. & Rote, G., 1989. "Approximation of convex curves with application to the bicriterial minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 42(3), pages 326-338, October.
    5. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    6. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    7. Namorado Climaco, Joao Carlos & Queiros Vieira Martins, Ernesto, 1982. "A bicriterion shortest path algorithm," European Journal of Operational Research, Elsevier, vol. 11(4), pages 399-404, December.
    8. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    9. Current, John & Min, HoKey, 1986. "Multiobjective design of transportation networks: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 26(2), pages 187-201, August.
    10. Brumbaugh-Smith, J. & Shier, D., 1989. "An empirical investigation of some bicriterion shortest path algorithms," European Journal of Operational Research, Elsevier, vol. 43(2), pages 216-224, November.
    11. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    12. Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
    13. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    14. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    15. Linda K. Nozick & George F. List & Mark A. Turnquist, 1997. "Integrated Routing and Scheduling in Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 31(3), pages 200-215, August.
    16. B. Boffey & Francisco García & Gilbert Laporte & Juan Mesa & Blas Pelegrín, 1995. "Multiobjective routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 167-220, December.
    17. Martins, Ernesto Queiros Vieira, 1984. "On a multicriteria shortest path problem," European Journal of Operational Research, Elsevier, vol. 16(2), pages 236-245, May.
    18. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiapei & Xie, Chi, 2024. "Identifying and minimizing critical driving range thresholds for electric vehicles in intercity networks," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    2. Bao, Zhaoyao & Li, Jiapei & Bai, Xuehan & Xie, Chi & Chen, Zhibin & Xu, Min & Shang, Wen-Long & Li, Hailong, 2023. "An optimal charging scheduling model and algorithm for electric buses," Applied Energy, Elsevier, vol. 332(C).
    3. Teng, Wenxin & Chen, Bi Yu, 2024. "Reliable lifelong planning A*: Technique for re-optimizing reliable shortest paths when travel time distribution updating," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    4. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    5. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
    6. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    2. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    3. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    4. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    5. de Lima Pinto, Leizer & Bornstein, Cláudio Thomás & Maculan, Nelson, 2009. "The tricriterion shortest path problem with at least two bottleneck objective functions," European Journal of Operational Research, Elsevier, vol. 198(2), pages 387-391, October.
    6. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    7. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    8. Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
    9. Gabrel, Virginie & Vanderpooten, Daniel, 2002. "Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite," European Journal of Operational Research, Elsevier, vol. 139(3), pages 533-542, June.
    10. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    11. Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
    12. Iori, Manuel & Martello, Silvano & Pretolani, Daniele, 2010. "An aggregate label setting policy for the multi-objective shortest path problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1489-1496, December.
    13. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    14. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    15. Sedeño-noda, Antonio & Colebrook, Marcos, 2019. "A biobjective Dijkstra algorithm," European Journal of Operational Research, Elsevier, vol. 276(1), pages 106-118.
    16. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    17. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    18. B. Boffey & Francisco García & Gilbert Laporte & Juan Mesa & Blas Pelegrín, 1995. "Multiobjective routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 167-220, December.
    19. Shi, Ning & Zhou, Shaorui & Wang, Fan & Tao, Yi & Liu, Liming, 2017. "The multi-criteria constrained shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 13-29.
    20. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:8:p:1043-1067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.