IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1133-d103256.html
   My bibliography  Save this article

A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions

Author

Listed:
  • Shou-feng Ji

    (School of Business Administration, Northeastern University, Shenyang 110167, China)

  • Rong-juan Luo

    (School of Business Administration, Northeastern University, Shenyang 110167, China)

Abstract

The increasing concern on global warming is prompting transportation sector to take into account more sustainable operation strategies. Among them, intermodal transportation (IT) has already been regarded as one of the most effective measures on carbon reductions. This paper focuses on the model and algorithm for a certain kind of IT, namely multi-objective multi-sourcing intermodal transportation network design problem (MO_MITNDP), in which carbon emission factors are specially considered. The MO_MITNDP is concerned with determining optimal transportation routes and modes for a series of freight provided by multiple sourcing places to find good balance between the total costs and time efficiencies. First, we establish a multi-objective integer programming model to formulate the MO_MITNDP with total cost (TTC) and maximum flow time (MFT) criteria. Specifically, carbon emission costs distinguished by the different transportation mode and route are included in the cost function. Second, to solve the MO_MITNDP, a hybrid estimation of distribution algorithm (HEDA) combined with a heterogeneous marginal distribution and a multi-objective local search is proposed, in which the from the Pareto dominance scenario. Finally, based on randomly generated data and a real-life case study of Jilin Petrochemical Company (JPC), China, simulation experiments and comparisons are carried out to demonstrate the effectiveness and application value of the proposed HEDA.

Suggested Citation

  • Shou-feng Ji & Rong-juan Luo, 2017. "A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions," Sustainability, MDPI, vol. 9(7), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1133-:d:103256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
    2. Limbourg, S. & Jourquin, B., 2009. "Optimal rail-road container terminal locations on the European network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 551-563, July.
    3. Bérubé, Jean-François & Gendreau, Michel & Potvin, Jean-Yves, 2009. "An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 39-50, April.
    4. Verma, Manish & Verter, Vedat & Zufferey, Nicolas, 2012. "A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 132-149.
    5. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    6. Lam, Jasmine Siu Lee & Gu, Yimiao, 2016. "A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 266-274.
    7. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    8. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    9. Nossack, Jenny & Pesch, Erwin, 2013. "A truck scheduling problem arising in intermodal container transportation," European Journal of Operational Research, Elsevier, vol. 230(3), pages 666-680.
    10. Ye Li & Lei Bao & Wenxiang Li & Haopeng Deng, 2016. "Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
    11. Ishfaq, Rafay & Sox, Charles R., 2012. "Design of intermodal logistics networks with hub delays," European Journal of Operational Research, Elsevier, vol. 220(3), pages 629-641.
    12. Jing Zhang & Qi Zhang & Li Zhang, 2015. "A Study on the Paths Choice of Intermodal Transport Based on Reliability," Springer Books, in: Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), Liss 2014, edition 127, pages 305-315, Springer.
    13. Resat, Hamdi G. & Turkay, Metin, 2015. "Design and operation of intermodal transportation network in the Marmara region of Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 16-33.
    14. Yi Zheng & Huchang Liao & Xue Yang, 2016. "Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers," Sustainability, MDPI, vol. 8(1), pages 1-19, January.
    15. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    16. Zheng, Huan-yu & Wang, Ling, 2015. "Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 421-432.
    17. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqing He & Zhihong Jin & Ying Huang & Shida Xu, 2021. "The Inland Container Transportation Problem with Separation Mode Considering Carbon Dioxide Emissions," Sustainability, MDPI, vol. 13(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    2. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    3. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.
    4. Arturo E. Pérez Rivera & Martijn R. K. Mes, 2019. "Integrated scheduling of drayage and long-haul operations in synchromodal transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 763-806, September.
    5. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    6. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    8. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    9. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    10. Sarhadi, Hassan & Tulett, David M. & Verma, Manish, 2017. "An analytical approach to the protection planning of a rail intermodal terminal network," European Journal of Operational Research, Elsevier, vol. 257(2), pages 511-525.
    11. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2020. "A simple game theoretical analysis for incentivizing multi-modal transportation in freight supply chains," European Journal of Operational Research, Elsevier, vol. 283(1), pages 152-165.
    12. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    13. Assadipour, Ghazal & Ke, Ginger Y. & Verma, Manish, 2015. "Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 45-57.
    14. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    15. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    16. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    17. Jabbarzadeh, Armin & Azad, Nader & Verma, Manish, 2020. "An optimization approach to planning rail hazmat shipments in the presence of random disruptions," Omega, Elsevier, vol. 96(C).
    18. Fateme Fotuhi & Nathan Huynh, 2017. "Reliable Intermodal Freight Network Expansion with Demand Uncertainties and Network Disruptions," Networks and Spatial Economics, Springer, vol. 17(2), pages 405-433, June.
    19. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    20. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1133-:d:103256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.