IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1573-d491987.html
   My bibliography  Save this article

The Inland Container Transportation Problem with Separation Mode Considering Carbon Dioxide Emissions

Author

Listed:
  • Wenqing He

    (Transportation Management College, Dalian Maritime University, Dalian 116026, China)

  • Zhihong Jin

    (Transportation Management College, Dalian Maritime University, Dalian 116026, China)

  • Ying Huang

    (Transportation Management College, Dalian Maritime University, Dalian 116026, China)

  • Shida Xu

    (Transportation Management College, Dalian Maritime University, Dalian 116026, China)

Abstract

This paper investigates the Inland Container Transportation (ICT) problem with carbon dioxide emissions. The separation mode that the tractor and semi-trailer could be detached and it permits multitasking to reduce fuel and carbon emission costs. A mixed-integer programming model with Full-Empty container integration has been built. An improved ant colony optimization with two-dimensional variable matrix encoding and Infeasible-Arc filtration strategy has been proposed. Numerical experiments with different scales and characteristics are simulated and validated in order to demonstrate the effectiveness of the proposed algorithm. The comparison result indicates the excellent stability for our approach with different task characteristic distribution.

Suggested Citation

  • Wenqing He & Zhihong Jin & Ying Huang & Shida Xu, 2021. "The Inland Container Transportation Problem with Separation Mode Considering Carbon Dioxide Emissions," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1573-:d:491987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue, Zhaojie & Zhang, Canrong & Lin, Wei-Hua & Miao, Lixin & Yang, Peng, 2014. "A tabu search heuristic for the local container drayage problem under a new operation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 136-150.
    2. Hajem A. Daham & Xinan Yang & Michaela K. Warnes, 2017. "An efficient mixed integer programming model for pairing containers in inland transportation based on the assignment of orders," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 678-694, June.
    3. Funke, Julia & Kopfer, Herbert, 2016. "A model for a multi-size inland container transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 70-85.
    4. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    5. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    6. Shan, Wenxuan & Peng, Zixuan & Liu, Jiaming & Yao, Baozhen & Yu, Bin, 2020. "An exact algorithm for inland container transportation network design," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 41-82.
    7. Caballini, Claudia & Sacone, Simona & Saeednia, Mahnam, 2016. "Cooperation among truck carriers in seaport containerized transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 38-56.
    8. Zhang, Guangming & Smilowitz, Karen & Erera, Alan, 2011. "Dynamic planning for urban drayage operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 764-777, September.
    9. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    10. Li, Hongqi & Lu, Yue & Zhang, Jun & Wang, Tianyi, 2013. "Trends in road freight transportation carbon dioxide emissions and policies in China," Energy Policy, Elsevier, vol. 57(C), pages 99-106.
    11. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Shou-feng Ji & Rong-juan Luo, 2017. "A Hybrid Estimation of Distribution Algorithm for Multi-Objective Multi-Sourcing Intermodal Transportation Network Design Problem Considering Carbon Emissions," Sustainability, MDPI, vol. 9(7), pages 1-24, June.
    13. Daozheng Huang & Gang Zhao, 2019. "A Shared Container Transportation Mode in the Yangtze River," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    14. Zhang, Ruiyou & Yun, Won Young & Moon, Ilkyeong, 2009. "A reactive tabu search algorithm for the multi-depot container truck transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 904-914, November.
    15. Alessandro Olivo & Paola Zuddas & Massimo Di Francesco & Antonio Manca, 2005. "An Operational Model for Empty Container Management," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 7(3), pages 199-222, September.
    16. Xuan Qiu & Jasmine Siu Lee Lam, 2018. "The Value of Sharing Inland Transportation Services in a Dry Port System," Transportation Science, INFORMS, vol. 52(4), pages 835-849, August.
    17. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    18. Houming Fan & Xiaoxue Ren & Zhenfeng Guo & Yang Li, 2019. "Truck Scheduling Problem Considering Carbon Emissions under Truck Appointment System," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    19. Qianwen Sun & Jiaqing Sun & Zhihong Jin & Shichao Sun, 2019. "Mode selection of tractor-and-semitrailer swap transport for ro-ro shipping under land-sea combined transportation," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(8), pages 995-1010, November.
    20. Xiaoning Shi & Thierry Vanelslander, 2010. "Design and evaluation of transportation networks: constructing transportation networks from perspectives of service integration, infrastructure investment and information system implementation," Netnomics, Springer, vol. 11(1), pages 1-4, April.
    21. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    22. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    23. Kevin X. Li & Tae-Joon Park & Paul Tae-Woo Lee & Heather McLaughlin & Wenming Shi, 2018. "Container Transport Network for Sustainable Development in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingbin Wang & Xiaolin Liu & Gang Li & Jianfeng Zheng, 2023. "Study on the Location-Routing Problem in Network-Type Tractor-and-Trailer Transportation Mode," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Li, Ming & Shao, Saijun & Li, Yang & Zhang, Hua & Zhang, Nianwu & He, Yandong, 2022. "A Physical Internet (PI) based inland container transportation problem with selective non-containerized shipping requests," International Journal of Production Economics, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Bustos-Coral, Daniel & Costa, Alysson M., 2022. "Drayage routing with heterogeneous fleet, compatibility constraints, and truck load configurations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    3. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. You, Jintao & Miao, Lixin & Zhang, Canrong & Xue, Zhaojie, 2020. "A generic model for the local container drayage problem using the emerging truck platooning operation mode," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 181-209.
    6. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    7. Wenchao Wei & Zining Dong & Jinkui Fan, 2023. "Integrated Location Selection and Scheduling Problems for Inland Container Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    8. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    9. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    10. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    11. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2016. "Branch-and-Price-and-Cut for the Truck-andTrailer Routing Problem with Time Windows," Working Papers 1617, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Chen, Rui & Jia, Shuai & Meng, Qiang, 2023. "Dynamic container drayage booking and routing decision support approach for E-commerce platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    14. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    15. Dessouky, Maged & Carvajal, Santiago & Yao, Siyuan, 2020. "Congestion Reduction Through Efficient Empty Container Movement Under Stochastic Demand," Institute of Transportation Studies, Working Paper Series qt34c676k1, Institute of Transportation Studies, UC Davis.
    16. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    17. Moghaddam, Mahboobeh & Pearce, Robin H. & Mokhtar, Hamid & Prato, Carlo G., 2020. "A generalised model for container drayage operations with heterogeneous fleet, multi-container sizes and two modes of operation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    18. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    19. Samaneh Shiri & Nathan Huynh & Daniel Smith & Frank Harder, 2022. "Impact of Second-Tier Container Port Facilities on Drayage Operation," Logistics, MDPI, vol. 6(4), pages 1-21, September.
    20. Koichi Shintani & Rob Konings & Etsuko Nishimura & Akio Imai, 2020. "The impact of foldable containers on the cost of empty container relocation in the hinterland of seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 68-101, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1573-:d:491987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.