IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v62y2014icp136-150.html
   My bibliography  Save this article

A tabu search heuristic for the local container drayage problem under a new operation mode

Author

Listed:
  • Xue, Zhaojie
  • Zhang, Canrong
  • Lin, Wei-Hua
  • Miao, Lixin
  • Yang, Peng

Abstract

This paper examines the Local Container Drayage Problem (LCDP) under an operation mode in which a tractor can be detached from its companion trailer and assigned to a new task. We have incorporated a set of temporal constraints into the classical VRP to realize this operation by utilizing the idle time available to tractors and coordinating the empty containers moving between customers. A tabu search algorithm is proposed. Some numerical experiments are conducted to assess the performance of the proposed algorithm, quantify the benefit of the new operation mode, and identify the conditions under which the mode is effective.

Suggested Citation

  • Xue, Zhaojie & Zhang, Canrong & Lin, Wei-Hua & Miao, Lixin & Yang, Peng, 2014. "A tabu search heuristic for the local container drayage problem under a new operation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 136-150.
  • Handle: RePEc:eee:transe:v:62:y:2014:i:c:p:136-150
    DOI: 10.1016/j.tre.2013.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513002019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Namboothiri, Rajeev & Erera, Alan L., 2008. "Planning local container drayage operations given a port access appointment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 185-202, March.
    2. Wang, Xiubin & Regan, Amelia C., 2002. "Local truckload pickup and delivery with hard time window constraints," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 97-112, February.
    3. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    4. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    5. Lai, Michela & Crainic, Teodor Gabriel & Di Francesco, Massimo & Zuddas, Paola, 2013. "An heuristic search for the routing of heterogeneous trucks with single and double container loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 108-118.
    6. Tjokroamidjojo, Darsono & Kutanoglu, Erhan & Taylor, G. Don, 2006. "Quantifying the value of advance load information in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(4), pages 340-357, July.
    7. Zhang, Ruiyou & Yun, Won Young & Moon, Ilkyeong, 2009. "A reactive tabu search algorithm for the multi-depot container truck transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 904-914, November.
    8. Cheung, Raymond K. & Shi, Ning & Powell, Warren B. & Simao, Hugo P., 2008. "An attribute-decision model for cross-border drayage problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 217-234, March.
    9. Gerdessen, Johanna C., 1996. "Vehicle routing problem with trailers," European Journal of Operational Research, Elsevier, vol. 93(1), pages 135-147, August.
    10. Jula, Hossein & Dessouky, Maged & Ioannou, Petros & Chassiakos, Anastasios, 2005. "Container movement by trucks in metropolitan networks: modeling and optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(3), pages 235-259, May.
    11. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    12. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    13. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    14. Bredström, David & Rönnqvist, Mikael, 2008. "Combined vehicle routing and scheduling with temporal precedence and synchronization constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 19-31, November.
    15. Zhang, Ruiyou & Yun, Won Young & Moon, Il Kyeong, 2011. "Modeling and optimization of a container drayage problem with resource constraints," International Journal of Production Economics, Elsevier, vol. 133(1), pages 351-359, September.
    16. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Zhang, Ruiyou & Lu, Jye-Chyi & Wang, Dingwei, 2014. "Container drayage problem with flexible orders and its near real-time solution strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 235-251.
    3. Benantar, A. & Abourraja, M.N. & Boukachour, J. & Boudebous, D. & Duvallet, C., 2020. "On the integration of container availability constraints into daily drayage operations arising in France: Modelling and optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    4. Nossack, Jenny & Pesch, Erwin, 2013. "A truck scheduling problem arising in intermodal container transportation," European Journal of Operational Research, Elsevier, vol. 230(3), pages 666-680.
    5. Xue, Ning & Bai, Ruibin & Qu, Rong & Aickelin, Uwe, 2021. "A hybrid pricing and cutting approach for the multi-shift full truckload vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 500-514.
    6. Funke, Julia & Kopfer, Herbert, 2016. "A model for a multi-size inland container transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 70-85.
    7. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    8. Bustos-Coral, Daniel & Costa, Alysson M., 2022. "Drayage routing with heterogeneous fleet, compatibility constraints, and truck load configurations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    9. You, Jintao & Miao, Lixin & Zhang, Canrong & Xue, Zhaojie, 2020. "A generic model for the local container drayage problem using the emerging truck platooning operation mode," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 181-209.
    10. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    11. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    12. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    13. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    14. Zhang, Ruiyou & Yun, Won Young & Moon, Il Kyeong, 2011. "Modeling and optimization of a container drayage problem with resource constraints," International Journal of Production Economics, Elsevier, vol. 133(1), pages 351-359, September.
    15. Hajem A. Daham & Xinan Yang & Michaela K. Warnes, 2017. "An efficient mixed integer programming model for pairing containers in inland transportation based on the assignment of orders," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 678-694, June.
    16. Yujian Song & Yuting Zhang & Wanli Wang & Ming Xue, 2023. "A Branch and Price Algorithm for the Drop-and-Pickup Container Drayage Problem with Empty Container Constraints," Sustainability, MDPI, vol. 15(7), pages 1-28, March.
    17. Lai, Michela & Crainic, Teodor Gabriel & Di Francesco, Massimo & Zuddas, Paola, 2013. "An heuristic search for the routing of heterogeneous trucks with single and double container loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 108-118.
    18. Caballini, Claudia & Sacone, Simona & Saeednia, Mahnam, 2016. "Cooperation among truck carriers in seaport containerized transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 38-56.
    19. Chen, Rui & Chen, Shukai & Cui, Haipeng & Meng, Qiang, 2021. "The container drayage problem for heterogeneous trucks with multiple loads: A revisit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    20. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:62:y:2014:i:c:p:136-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.