IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v105y2012i1p311-321.html
   My bibliography  Save this article

General linear mixed model and signal extraction problem with constraint

Author

Listed:
  • Dermoune, Azzouz
  • Rahmania, Nadji
  • Wei, Tianwen

Abstract

We consider a noisy observed vector y=x+u∈Rn. The unobserved vector x is a solution of a non-invertible linear system Ax=v, where v is a forcing term. A unique solution of the system is obtained by considering additional constraint on the vector x. This constraint is defined by a triple (β,F,A−), where β is a vector, F denotes a matrix whose range is equal to N(A) (the null space of A) and A− is a generalized inverse of A. Each triple (β,F,A−) defines the solution x=Fβ+A−v and the general linear mixed model y=Fβ+A−v+u. Given the covariance matrices of u and v, we will prove that the best linear unbiased predictor of x knowing y depends only on A. If β is a parameter and (F,A−) is given, then we will study the asymptotic behavior of the best linear estimator of β. If the constraint (β,F,A−) is not known, then we will estimate it using the data y. Some numerical results will be given.

Suggested Citation

  • Dermoune, Azzouz & Rahmania, Nadji & Wei, Tianwen, 2012. "General linear mixed model and signal extraction problem with constraint," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 311-321.
  • Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:311-321
    DOI: 10.1016/j.jmva.2011.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11002028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2011.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schlicht, Ekkehart, 2004. "Estimating the Smoothing Parameter in the So-Called Hodrick-Prescott Filter," IZA Discussion Papers 1054, Institute of Labor Economics (IZA).
    2. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    3. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    4. Drygas, Hilmar, 1985. "Linear sufficiency and some applications in multilinear estimation," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 71-84, February.
    5. Liu, Xu-Qing & Rong, Jian-Ying & Liu, Xiu-Ying, 2008. "Best linear unbiased prediction for linear combinations in general mixed linear models," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1503-1517, September.
    6. Dermoune Azzouz & Djehiche Boualem & Rahmania Nadji, 2009. "Multivariate Extension of the Hodrick-Prescott Filter-Optimality and Characterization," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-35, May.
    7. Lynn LaMotte, 2007. "A direct derivation of the REML likelihood function," Statistical Papers, Springer, vol. 48(2), pages 321-327, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dermoune, Azzouz & Preda, Cristian, 2017. "Parametrizations, fixed and random effects," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 162-176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bloechl, Andreas, 2014. "Penalized Splines, Mixed Models and the Wiener-Kolmogorov Filter," Discussion Papers in Economics 21406, University of Munich, Department of Economics.
    2. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    3. Posch, Peter N., 2011. "Time to change. Rating changes and policy implications," Journal of Economic Behavior & Organization, Elsevier, vol. 80(3), pages 641-656.
    4. Blöchl, Andreas, 2014. "Penalized Splines as Frequency Selective Filters - Reducing the Excess Variability at the Margins," Discussion Papers in Economics 20687, University of Munich, Department of Economics.
    5. David E. Giles & Chad N. Stroomer, 2004. "Identifying the Cycle of a Macroeconomic Time-Series Using Fuzzy Filtering," Econometrics Working Papers 0406, Department of Economics, University of Victoria.
    6. Martin Boďa & Mariana Považanová, 2023. "How credible are Okun coefficients? The gap version of Okun’s law for G7 economies," Economic Change and Restructuring, Springer, vol. 56(3), pages 1467-1514, June.
    7. Bloechl, Andreas, 2014. "Reducing the Excess Variability of the Hodrick-Prescott Filter by Flexible Penalization," Discussion Papers in Economics 17940, University of Munich, Department of Economics.
    8. Liu, Xu-Qing & Wang, Dong-Dong & Rong, Jian-Ying, 2009. "Quadratic prediction and quadratic sufficiency in finite populations," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1979-1988, October.
    9. Dermoune Azzouz & Djehiche Boualem & Rahmania Nadji, 2009. "Multivariate Extension of the Hodrick-Prescott Filter-Optimality and Characterization," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-35, May.
    10. Lubos Hanus & Lukas Vacha, 2015. "Business cycle synchronization of the Visegrad Four and the European Union," Working Papers IES 2015/19, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2015.
    11. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    12. Kožić, Ivan & Sever, Ivan, 2014. "Measuring business cycles: Empirical Mode Decomposition of economic time series," Economics Letters, Elsevier, vol. 123(3), pages 287-290.
    13. Peter Phillips, 2010. "Two New Zealand pioneer econometricians," New Zealand Economic Papers, Taylor & Francis Journals, vol. 44(1), pages 1-26.
    14. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    15. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    16. Konon, Alexander & Fritsch, Michael & Kritikos, Alexander S., 2018. "Business cycles and start-ups across industries: An empirical analysis of German regions," Journal of Business Venturing, Elsevier, vol. 33(6), pages 742-761.
    17. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    18. Herwartz, H. & Xu, F., 2010. "A functional coefficient model view of the Feldstein-Horioka puzzle," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 37-54, February.
    19. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    20. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:311-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.