IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Von Neumann-Morgenstern stable sets in matching problems

  • Ehlers, Lars

The following properties of the core of a one-to-one matching problem are well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problems. We show that a set of matchings is a stable set of a one-to-one matching problem only if it is a maximal set satisfying the following properties: (a) the core is a subset of the set; (b) the set is a lattice; and (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b), and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6WJ3-4JYKM2C-1/2/340c6c9fcc75353333dc5b568fa6a1b3
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Theory.

Volume (Year): 134 (2007)
Issue (Month): 1 (May)
Pages: 537-547

as
in new window

Handle: RePEc:eee:jetheo:v:134:y:2007:i:1:p:537-547
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/622869

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Martin J Osborne & Ariel Rubinstein, 2009. "A Course in Game Theory," Levine's Bibliography 814577000000000225, UCLA Department of Economics.
  2. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer, vol. 15(3), pages 187-200.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:134:y:2007:i:1:p:537-547. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.