IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v63y2012i2p260-270.html
   My bibliography  Save this article

Optimal spatial control of biological invasions

Author

Listed:
  • Epanchin-Niell, Rebecca S.
  • Wilen, James E.

Abstract

This study examines the spatial nature of optimal bioinvasion control. We develop a spatially explicit two-dimensional model of species spread that allows for differential control across space and time, and we solve for optimal spatial–dynamic control strategies. The qualitative nature of optimal strategies depends in interesting ways on aspects of landscape and invasion geometry. For example, reducing the extent of exposed invasion edge, through spread, removal, or strategically employing landscape features, can be optimal because it reduces long-term containment costs. Optimal invasion control is spatially and temporally “forward-looking” in the sense that strategies should be targeted to slow or prevent the spread of an invasion in the direction of greatest potential long-term damages. These spatially explicit characterizations of optimal policies contribute insights and intuition to the largely nonspatial literature on controlling invasions and to understanding control of spatial–dynamic processes in general.

Suggested Citation

  • Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
  • Handle: RePEc:eee:jeeman:v:63:y:2012:i:2:p:260-270
    DOI: 10.1016/j.jeem.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069611001392
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Wilen, 2007. "Economics of Spatial-Dynamic Processes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1134-1144.
    2. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(01), pages 178-194, April.
    3. Pannell, David J., 1990. "An Economic Response Model Of Herbicide Application For Weed Control," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 34(03), December.
    4. Sanchirico, James N. & Wilen, James E., 2005. "Optimal spatial management of renewable resources: matching policy scope to ecosystem scale," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 23-46, July.
    5. Mark Eiswerth & Wayne Johnson, 2002. "Managing Nonindigenous Invasive Species: Insights from Dynamic Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 319-342, November.
    6. James Sanchirico & Heidi Albers & Carolyn Fischer & Conrad Coleman, 2010. "Spatial Management of Invasive Species: Pathways and Policy Options," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(4), pages 517-535, April.
    7. Finnoff, David & Potapov, Alexei & Lewis, Mark A., 2010. "Control and the management of a spreading invader," Resource and Energy Economics, Elsevier, vol. 32(4), pages 534-550, November.
    8. Blackwood, Julie & Hastings, Alan & Costello, Christopher, 2010. "Cost-effective management of invasive species using linear-quadratic control," Ecological Economics, Elsevier, vol. 69(3), pages 519-527, January.
    9. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    10. Sanchirico, James N. & Wilen, James E., 1999. "Bioeconomics of Spatial Exploitation in a Patchy Environment," Journal of Environmental Economics and Management, Elsevier, vol. 37(2), pages 129-150, March.
    11. Jean-Daniel M. Saphores, 2000. "The Economic Threshold with a Stochastic Pest Population: A Real Options Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 541-555.
    12. Brock, William & Xepapadeas, Anastasios, 2008. "Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2745-2787, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:63:y:2012:i:2:p:260-270. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.