IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Pricing options on scenario trees

  • Topaloglou, Nikolas
  • Vladimirou, Hercules
  • Zenios, Stavros A.

We examine valuation procedures that can be applied to incorporate options in scenario-based portfolio optimization models. Stochastic programming models use discrete scenarios to represent the stochastic evolution of asset prices. At issue is the adoption of suitable procedures to price options on the basis of the postulated discrete distributions of asset prices so as to ensure internally consistent portfolio optimization models. We adapt and implement two methods to price European options in accordance with discrete distributions represented by scenario trees and assess their performance with numerical tests. We consider features of option prices that are observed in practice. We find that asymmetries and/or leptokurtic features in the distribution of the underlying materially affect option prices; we quantify the impact of higher moments (skewness and excess kurtosis) on option prices. We demonstrate through empirical tests using market prices of the S&P500 stock index and options on the index that the proposed procedures consistently approximate the observed prices of options under different market regimes, especially for deep out-of-the-money options.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 32 (2008)
Issue (Month): 2 (February)
Pages: 283-298

in new window

Handle: RePEc:eee:jbfina:v:32:y:2008:i:2:p:283-298
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
  2. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
  3. Rubinstein, Mark, 1985. " Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-80, June.
  4. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
  5. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
  6. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-51.
  7. M. A. H. Dempster & J. P. Hutton, 1999. "Pricing American Stock Options by Linear Programming," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 229-254.
  8. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
  9. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
  10. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  12. Hercules Vladimirou & Nikolas Topaloglou & Stavros A. Zenios, 2006. "A Stochastic Programming Framework for International PortfolioManagement," Computing in Economics and Finance 2006 404, Society for Computational Economics.
  13. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
  14. Christine A. Brown & David M. Robinson, 2002. "Skewness and Kurtosis Implied by Option Prices: A Correction," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 279-282.
  15. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  16. M. A. H. Dempster & D. G. Richards, 2000. "Pricing American Options Fitting the Smile," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 157-177.
  17. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  18. Jarrow, Robert & Rudd, Andrew, 1982. "Approximate option valuation for arbitrary stochastic processes," Journal of Financial Economics, Elsevier, vol. 10(3), pages 347-369, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:2:p:283-298. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.