IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v25y2022i3d10.1007_s11147-022-09187-x.html
   My bibliography  Save this article

Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach

Author

Listed:
  • Pakorn Aschakulporn

    (University of Otago)

  • Jin E. Zhang

    (University of Otago)

Abstract

This paper is a sequel to Aschakulporn and Zhang (J Futures Mark 42(3):365–388, 2022). The errors of the Bakshi et al. (Rev Financ Stud 16(1):101–143, 2003) risk-neutral moment estimators is studied using the Gram–Charlier density—with the skewness and excess kurtosis specified. To obtain skewness with (absolute) errors less than $$10^{-3}$$ 10 - 3 , the range of strikes ( $$K_{\min }, K_{\max }$$ K min , K max ) must contain at least 3/4 to 4/3 of the forward price and have a step size ( $$\Delta K$$ Δ K ) of no more than 0.1% of the forward price. The range of strikes and step size corresponds to truncation and discretization errors, respectively. This is consistent to Aschakulporn and Zhang (2022) for non-volatile market periods.

Suggested Citation

  • Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
  • Handle: RePEc:kap:revdev:v:25:y:2022:i:3:d:10.1007_s11147-022-09187-x
    DOI: 10.1007/s11147-022-09187-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-022-09187-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-022-09187-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    7. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    8. Manuel Ammann & Alexander Feser, 2019. "Robust estimation of risk‐neutral moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1137-1166, September.
    9. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    10. Christine A. Brown & David M. Robinson, 2002. "Skewness and Kurtosis Implied by Option Prices: A Correction," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 279-282, June.
    11. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    12. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    13. George P Gao & Pengjie Gao & Zhaogang Song, 2018. "Do Hedge Funds Exploit Rare Disaster Concerns?," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2650-2692.
    14. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    15. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    16. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    17. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    18. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    21. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    22. Manuel Ammann & Alexander Feser, 2019. "Robust Estimation of Risk-Neutral Moments," Working Papers on Finance 1902, University of St. Gallen, School of Finance.
    23. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyu Zhang & Xinfeng Ruan & Jin E. Zhang, 2023. "Risk‐neutral moments and return predictability: International evidence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1086-1111, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    4. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    5. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk‐neutral moment estimators: An affine jump‐diffusion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 365-388, March.
    6. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    7. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Skewness and Kurtosis Implied by Option Prices: A Second Comment," FMG Discussion Papers dp419, Financial Markets Group.
    11. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    12. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    13. Manuel Ammann & Alexander Feser, 2019. "Robust Estimation of Risk-Neutral Moments," Working Papers on Finance 1902, University of St. Gallen, School of Finance.
    14. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    15. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "Pricing options on scenario trees," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 283-298, February.
    16. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    17. Manuel Ammann & Alexander Feser, 2019. "Robust estimation of risk‐neutral moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1137-1166, September.
    18. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    19. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    20. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.

    More about this item

    Keywords

    Risk-neutral moment estimators; Gram–Charlier densities; Skewness; Kurtosis;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:25:y:2022:i:3:d:10.1007_s11147-022-09187-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.