IDEAS home Printed from
   My bibliography  Save this article

Forecasting the NN5 time series with hybrid models


  • Wichard, Jörg D.


We propose a simple way of predicting time series with recurring seasonal periods. Missing values of the time series are estimated and interpolated in a preprocessing step. We combine several forecasting methods by taking the weighted mean of forecasts that were generated with time-domain models which were validated on left-out parts of the time series. The hybrid model is a combination of a neural network ensemble, an ensemble of nearest trajectory models and a model for the 7-day cycle. We apply this approach to the NN5 time series competition data set.

Suggested Citation

  • Wichard, Jörg D., 2011. "Forecasting the NN5 time series with hybrid models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 700-707, July.
  • Handle: RePEc:eee:intfor:v:27:y::i:3:p:700-707

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    2. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kaihua Deng, 2015. "Predicting By Learning: An Adaptive Rationale," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-14, December.
    2. Venkatesh, Kamini & Ravi, Vadlamani & Prinzie, Anita & Poel, Dirk Van den, 2014. "Cash demand forecasting in ATMs by clustering and neural networks," European Journal of Operational Research, Elsevier, vol. 232(2), pages 383-392.
    3. V. Kamini & V. Ravi & A. Prinzie & D. Van Den Poel, 2013. "Cash Demand Forecasting in ATMs by Clustering and Neural Networks," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/865, Ghent University, Faculty of Economics and Business Administration.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:3:p:700-707. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.