IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A limit distribution of credit portfolio losses with low default probabilities

Listed author(s):
  • Shi, Xiaojun
  • Tang, Qihe
  • Yuan, Zhongyi
Registered author(s):

    This paper employs a multivariate extreme value theory (EVT) approach to study the limit distribution of the loss of a general credit portfolio with low default probabilities. A latent variable model is employed to quantify the credit portfolio loss, where both heavy tails and tail dependence of the latent variables are realized via a multivariate regular variation (MRV) structure. An approximation formula to implement our main result numerically is obtained. Intensive simulation experiments are conducted, showing that this approximation formula is accurate for relatively small default probabilities, and that our approach is superior to a copula-based approach in reducing model risk.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716304528
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 73 (2017)
    Issue (Month): C ()
    Pages: 156-167

    as
    in new window

    Handle: RePEc:eee:insuma:v:73:y:2017:i:c:p:156-167
    DOI: 10.1016/j.insmatheco.2017.02.003
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    2. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    3. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    4. Andersson, Fredrik & Mayock, Tom, 2014. "Loss severities on residential real estate debt during the Great Recession," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 266-284.
    5. Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    8. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    9. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    10. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    11. Bernardi, Enrico & Falangi, Federico & Romagnoli, Silvia, 2015. "A hierarchical copula-based world-wide valuation of sovereign risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 155-169.
    12. Renault, Olivier & Scaillet, Olivier, 2004. "On the way to recovery: A nonparametric bias free estimation of recovery rate densities," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.
    13. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    14. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    15. Denuit, Michel & Kiriliouk, Anna & Segers, Johan, 2015. "Max-factor individual risk models with application to credit portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 162-172.
    16. Vandendorpe, Antoine & Ho, Ngoc-Diep & Vanduffel, Steven & Van Dooren, Paul, 2008. "On the parameterization of the CreditRisk + model for estimating credit portfolio risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 736-745, April.
    17. Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
    18. Scott, Alexandre & Metzler, Adam, 2015. "A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 279-293.
    19. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    20. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    21. Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.
    22. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Discussion Paper 2008-42, Tilburg University, Center for Economic Research.
    23. Donnelly, Catherine & Embrechts, Paul, 2010. "The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 40(01), pages 1-33, May.
    24. de Haan, L. & Resnick, S. I., 1981. "On the observation closest to the origin," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 301-308, August.
    25. Hao, Xuemiao & Li, Xuan, 2015. "Pricing credit default swaps with a random recovery rate by a double inverse Fourier transform," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 103-110.
    26. Park, Yun W. & Bang, Doo Won, 2014. "Loss given default of residential mortgages in a low LTV regime: Role of foreclosure auction process and housing market cycles," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 192-210.
    27. Pesola, Jarmo, 2011. "Joint effect of financial fragility and macroeconomic shocks on bank loan losses: Evidence from Europe," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3134-3144, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:73:y:2017:i:c:p:156-167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.