IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i3p846-857.html
   My bibliography  Save this article

Cure events in default prediction

Author

Listed:
  • Wolter, Marcus
  • Rösch, Daniel

Abstract

This paper evaluates the resurrection event regarding defaulted firms and incorporates observable cure events in the default prediction of SME. Due to the additional cure-related observable data, a completely new information set is applied to predict individual default and cure events. This is a new approach in credit risk that, to our knowledge, has not been followed yet. Different firm-specific and macroeconomic default and cure-event-influencing risk drivers are identified. The significant variables allow a firm-specific default risk evaluation combined with an individual risk reducing cure probability. The identification and incorporation of cure-relevant factors in the default risk framework enable lenders to support the complete resurrection of a firm in the case of its default and hence reduce the default risk itself. The estimations are developed with a database that contains 5930 mostly small and medium-sized German firms and a total of more than 23000 financial statements over a time horizon from January 2002 to December 2007. Due to the significant influence on the default risk probability as well as the bank’s possible profit prospects concerning a cured firm, it seems essential for risk management to incorporate the additional cure information into credit risk evaluation.

Suggested Citation

  • Wolter, Marcus & Rösch, Daniel, 2014. "Cure events in default prediction," European Journal of Operational Research, Elsevier, vol. 238(3), pages 846-857.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:846-857 DOI: 10.1016/j.ejor.2014.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714003889
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    2. Merton, Robert C., 1977. "On the pricing of contingent claims and the Modigliani-Miller theorem," Journal of Financial Economics, Elsevier, vol. 5(2), pages 241-249, November.
    3. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    4. Jarrow, Robert A. & Turnbull, Stuart M., 2000. "The intersection of market and credit risk," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 271-299, January.
    5. Madan, Dilip & Unal, Haluk, 2000. "A Two-Factor Hazard Rate Model for Pricing Risky Debt and the Term Structure of Credit Spreads," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(01), pages 43-65, March.
    6. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    7. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
    8. Altman, Edward I. & Saunders, Anthony, 1997. "Credit risk measurement: Developments over the last 20 years," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1721-1742, December.
    9. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    10. Ambrose, Brent W & Capone, Charles A, Jr, 1996. "Cost-Benefit Analysis of Single-Family Foreclosure Alternatives," The Journal of Real Estate Finance and Economics, Springer, vol. 13(2), pages 105-120, September.
    11. James P. Hughes, 1999. "Mixed Effects Models with Censored Data with Application to HIV RNA Levels," Biometrics, The International Biometric Society, vol. 55(2), pages 625-629, June.
    12. Halberstadt, Arne & Stapf, Jelena, 2012. "An affine multifactor model with macro factors for the German term structure: Changing results during the recent crises," Discussion Papers 25/2012, Deutsche Bundesbank.
    13. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", pages 129-137.
    14. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    15. Renault, Olivier & Scaillet, Olivier, 2004. "On the way to recovery: A nonparametric bias free estimation of recovery rate densities," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453 World Scientific Publishing Co. Pte. Ltd..
    18. repec:bla:joares:v:4:y:1966:i::p:71-111 is not listed on IDEAS
    19. Yildiray Yildirim, 2008. "Estimating Default Probabilities of CMBS Loans with Clustering and Heavy Censoring," The Journal of Real Estate Finance and Economics, Springer, vol. 37(2), pages 93-111, August.
    20. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    21. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    22. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409 World Scientific Publishing Co. Pte. Ltd..
    23. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    24. Eun-Ju Lee & David Eastwood & Jinkook Lee, 2004. "A Sample Selection Model of Consumer Adoption of Computer Banking," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(3), pages 263-275, December.
    25. Lützenkirchen, Kristina & Rösch, Daniel & Scheule, Harald, 2014. "Asset portfolio securitizations and cyclicality of regulatory capital," European Journal of Operational Research, Elsevier, vol. 237(1), pages 289-302.
    26. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    27. repec:bla:joares:v:6:y:1968:i:2:p:179-192 is not listed on IDEAS
    28. Yu, Binbing & Peng, Yingwei, 2008. "Mixture cure models for multivariate survival data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1524-1532, January.
    29. Greene, William, 1998. "Sample selection in credit-scoring models1," Japan and the World Economy, Elsevier, vol. 10(3), pages 299-316, July.
    30. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    31. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    32. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    33. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    34. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    2. Yuting Li & Tong Chen & Baogui Xin, 2016. "Optimal Financing Decisions of Two Cash-Constrained Supply Chains with Complementary Products," Sustainability, MDPI, Open Access Journal, vol. 8(5), pages 1-17, April.
    3. Perko, Igor, 2017. "Behaviour-based short-term invoice probability of default evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1045-1054.
    4. repec:gam:jsusta:v:8:y:2016:i:5:p:429:d:69266 is not listed on IDEAS

    More about this item

    Keywords

    Finance; Risk analysis; Risk management;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:846-857. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.