IDEAS home Printed from
   My bibliography  Save this paper

Efficient Exponential Tilting for Portfolio Credit Risk


  • Cheng-Der Fuh
  • Chuan-Ju Wang


This paper considers the problem of measuring the credit risk in portfolios of loans, bonds, and other instruments subject to possible default under multi-factor models. Due to the amount of the portfolio, the heterogeneous effect of obligors, and the phenomena that default events are rare and mutually dependent, it is difficult to calculate portfolio credit risk either by means of direct analysis or crude Monte Carlo under such models. To capture the extreme dependence among obligors, we provide an efficient simulation method for multi-factor models with a normal mixture copula that allows the multivariate defaults to have an asymmetric distribution, while most of the literature focuses on simulating one-dimensional cases. To this end, we first propose a general account of an importance sampling algorithm based on an unconventional exponential embedding, which is related to the classical sufficient statistic. Note that this innovative tilting device is more suitable for the multivariate normal mixture model than traditional one-parameter tilting methods and is of independent interest. Next, by utilizing a fast computational method for how the rare event occurs and the proposed importance sampling method, we provide an efficient simulation algorithm to estimate the probability that the portfolio incurs large losses under the normal mixture copula. Here the proposed simulation device is based on importance sampling for a joint probability other than the conditional probability used in previous studies. Theoretical investigations and simulation studies, which include an empirical example, are given to illustrate the method.

Suggested Citation

  • Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744,, revised Apr 2019.
  • Handle: RePEc:arx:papers:1711.03744

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
    2. Scott, Alexandre & Metzler, Adam, 2015. "A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 279-293.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Cheng-Der Fuh, 2004. "Efficient importance sampling for events of moderate deviations with applications," Biometrika, Biometrika Trust, vol. 91(2), pages 471-490, June.
    5. Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
    6. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    7. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2008. "Fast Simulation of Multifactor Portfolio Credit Risk," Operations Research, INFORMS, vol. 56(5), pages 1200-1217, October.
    8. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    9. Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
    10. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    11. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    12. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    13. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2007. "Large Deviations In Multifactor Portfolio Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 345-379, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    2. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    3. Hsieh, Ming-Hua & Lee, Yi-Hsi & Shyu, So-De & Chiu, Yu-Fen, 2019. "Estimating multifactor portfolio credit risk: A variance reduction approach," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    4. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    5. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    6. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611,
    7. Shi, Xiaojun & Tang, Qihe & Yuan, Zhongyi, 2017. "A limit distribution of credit portfolio losses with low default probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 156-167.
    8. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    9. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    10. Collins, Sean & Gallagher, Emily, 2016. "Assessing the credit risk of money market funds during the eurozone crisis," Journal of Financial Stability, Elsevier, vol. 25(C), pages 150-165.
    11. So Yeon Chun & Miguel A. Lejeune, 2020. "Risk-Based Loan Pricing: Portfolio Optimization Approach with Marginal Risk Contribution," Management Science, INFORMS, vol. 66(8), pages 3735-3753, August.
    12. Leitao, Álvaro & Ortiz-Gracia, Luis, 2020. "Model-free computation of risk contributions in credit portfolios," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    13. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    14. Adam Metzler & Alexandre Scott, 2020. "Importance Sampling in the Presence of PD-LGD Correlation," Risks, MDPI, Open Access Journal, vol. 8(1), pages 1-36, March.
    15. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    16. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    17. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    18. Jie Shen & Yi Shen & Bin Wang & Ruodu Wang, 2019. "Distributional compatibility for change of measures," Finance and Stochastics, Springer, vol. 23(3), pages 761-794, July.
    19. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    20. Çela, Eranda & Hafner, Stephan & Mestel, Roland & Pferschy, Ulrich, 2021. "Mean-variance portfolio optimization based on ordinal information," Journal of Banking & Finance, Elsevier, vol. 122(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.03744. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.