IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i6p1395-1406.html
   My bibliography  Save this article

Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors

Author

Listed:
  • Cheng-Der Fuh

    (Graduate Institute of Statistics, National Central University, Jhong-Li, 32001 Taiwan, Republic of China)

  • Inchi Hu

    (Department of ISOM, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Ya-Hui Hsu

    (Global Statistics and Data Management, Abbott Laboratories, Abbott Park, Illinois 60064)

  • Ren-Her Wang

    (Department of Banking and Finance, Tamkang University, New Taipei City, 25137 Taiwan, Republic of China)

Abstract

Simulation of small probabilities has important applications in many disciplines. The probabilities considered in value-at-risk (VaR) are moderately small. However, the variance reduction techniques developed in the literature for VaR computation are based on large-deviations methods, which are good for very small probabilities. Modeling heavy-tailed risk factors using multivariate t distributions, we develop a new method for VaR computation. We show that the proposed method minimizes the variance of the importance-sampling estimator exactly, whereas previous methods produce approximations to the exact solution. Thus, the proposed method consistently outperforms existing methods derived from large deviations theory under various settings. The results are confirmed by a simulation study.

Suggested Citation

  • Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1395-1406
    DOI: 10.1287/opre.1110.0993
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0993
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Winfried G. Hallerbach, 1999. "Decomposing Portfolio Value-at-Risk: A General Analysis," Tinbergen Institute Discussion Papers 99-034/2, Tinbergen Institute.
    2. Cheng-Der Fuh, 2004. "Efficient importance sampling for events of moderate deviations with applications," Biometrika, Biometrika Trust, vol. 91(2), pages 471-490, June.
    3. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2018. "Ex-ante real estate Value at Risk calculation method," Annals of Operations Research, Springer, vol. 262(2), pages 257-285, March.
    2. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    3. Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
    4. Cheng-Der Fuh & Yanwei Jia & Steven Kou, 2023. "A General Framework for Importance Sampling with Latent Markov Processes," Papers 2311.12330, arXiv.org.
    5. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
    6. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    2. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.
    3. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    4. Soumyadip Ghosh & Raghu Pasupathy, 2012. "C-NORTA: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 295-310, May.
    5. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
    6. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
    7. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2013. "Efficient Importance Sampling for Rare Event Simulation with Applications," Papers 1302.0583, arXiv.org.
    8. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    9. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    10. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    12. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    13. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    14. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    15. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    16. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
    17. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    18. Pierre Nyquist, 2013. "Moderate deviations for importance sampling estimators of risk measures," Papers 1306.6588, arXiv.org.
    19. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    20. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1395-1406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.