IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.07148.html
   My bibliography  Save this paper

Estimating risks of option books using neural-SDE market models

Author

Listed:
  • Samuel N. Cohen
  • Christoph Reisinger
  • Sheng Wang

Abstract

In this paper, we examine the capacity of an arbitrage-free neural-SDE market model to produce realistic scenarios for the joint dynamics of multiple European options on a single underlying. We subsequently demonstrate its use as a risk simulation engine for option portfolios. Through backtesting analysis, we show that our models are more computationally efficient and accurate for evaluating the Value-at-Risk (VaR) of option portfolios, with better coverage performance and less procyclicality than standard filtered historical simulation approaches.

Suggested Citation

  • Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
  • Handle: RePEc:arx:papers:2202.07148
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.07148
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Fallon, 1996. "Calculating Value-at-Risk," Center for Financial Institutions Working Papers 96-49, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Gurrola-Perez, Pedro & Murphy, David, 2015. "Filtered historical simulation Value-at-Risk models and their competitors," Bank of England working papers 525, Bank of England.
    7. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    8. Jason C. Hsu & Barry L. Nelson, 1990. "Control Variates for Quantile Estimation," Management Science, INFORMS, vol. 36(7), pages 835-851, July.
    9. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    10. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    11. Mark Britten-Jones & Stephen M. Schaefer, 1999. "Non-Linear Value-at-Risk," Review of Finance, European Finance Association, vol. 2(2), pages 161-187.
    12. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    13. Murphy, David & Vasios, Michalis & Vause, Nick, 2014. "Financial Stability Paper No 29: An investigation into the procyclicality of risk-based initial margin models," Bank of England Financial Stability Papers 29, Bank of England.
    14. Timothy C. Hesterberg & Barry L. Nelson, 1998. "Control Variates for Probability and Quantile Estimation," Management Science, INFORMS, vol. 44(9), pages 1295-1312, September.
    15. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    16. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and Repairing Arbitrage in Traded Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(5), pages 345-373, September.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Risks, MDPI, vol. 8(3), pages 1-18, August.
    19. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    20. Giovanni Barone-Adesi & Kostas Giannopoulos, 2001. "Non parametric VaR Techniques. Myths and Realities," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 167-181, July.
    21. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    22. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    23. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    24. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    25. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
    26. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58, March.
    27. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    2. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    3. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    4. Claude Martini & Arianna Mingone, 2023. "A closed form model-free approximation for the Initial Margin of option portfolios," Papers 2306.16346, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    3. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    4. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    5. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    6. Claude Martini & Arianna Mingone, 2023. "A closed form model-free approximation for the Initial Margin of option portfolios," Papers 2306.16346, arXiv.org.
    7. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
    8. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    9. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
    10. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    11. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    12. Seyed Mohammad Sina Seyfi & Azin Sharifi & Hamidreza Arian, 2020. "Portfolio Risk Measurement Using a Mixture Simulation Approach," Papers 2011.07994, arXiv.org.
    13. Bagher Adabi & Mohsen Mehrara & Shapour Mohammadi, 2015. "Evaluation Approaches of Value at Risk for Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 41-62, Winter.
    14. Seyfi, Seyed Mohammad Sina & Sharifi, Azin & Arian, Hamidreza, 2021. "Portfolio Value-at-Risk and expected-shortfall using an efficient simulation approach based on Gaussian Mixture Model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1056-1079.
    15. Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.
    16. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    17. Tjeerd de Vries, 2021. "A Tale of Two Tails: A Model-free Approach to Estimating Disaster Risk Premia and Testing Asset Pricing Models," Papers 2105.08208, arXiv.org, revised Oct 2023.
    18. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    19. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    20. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.07148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.