IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.6588.html
   My bibliography  Save this paper

Moderate deviations for importance sampling estimators of risk measures

Author

Listed:
  • Pierre Nyquist

Abstract

Importance sampling has become an important tool for the computation of tail-based risk measures. Since such quantities are often determined mainly by rare events standard Monte Carlo can be inefficient and importance sampling provides a way to speed up computations. This paper considers moderate deviations for the weighted empirical process, the process analogue of the weighted empirical measure, arising in importance sampling. The moderate deviation principle is established as an extension of existing results. Using a delta method for large deviations established by Gao and Zhao (Ann. Statist., 2011) together with classical large deviation techniques, the moderate deviation principle for the weighted empirical process is extended to functionals of the weighted empirical process which correspond to risk measures. The main results are moderate deviation principles for importance sampling estimators of the quantile function of a distribution and Expected Shortfall.

Suggested Citation

  • Pierre Nyquist, 2013. "Moderate deviations for importance sampling estimators of risk measures," Papers 1306.6588, arXiv.org.
  • Handle: RePEc:arx:papers:1306.6588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.6588
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value-at-Risk with Heavy-Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.6588. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.