IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v7y2014i4p257-269.html
   My bibliography  Save this article

Analysis of pipeline accidents in the United States from 1968 to 2009

Author

Listed:
  • Siler-Evans, Kyle
  • Hanson, Alex
  • Sunday, Cecily
  • Leonard, Nathan
  • Tumminello, Michele

Abstract

Pipelines are responsible for the transportation of a significant portion of the U.S. energy supply. Unfortunately, pipeline failures are common and the consequences can be catastrophic. Drawing on data from the Pipeline and Hazardous Materials Safety Administration (PHMSA) that covers approximately 40,000 incidents from 1968 to 2009, this paper explores the trends, causes and consequences of natural gas and hazardous liquid pipeline accidents. The analysis indicates that fatalities and injuries from pipeline accidents are generally decreasing over time, while property damage and, in some cases, the numbers of incidents are increasing over time. In five of the ten cases considered in this paper, the damage from pipeline accidents – in terms of injuries, fatalities and volume of product spilled – are well characterized by a power-law distribution, indicating that catastrophic pipeline accidents are more likely than would be predicted by more common “thin-tailed” distributions. The results also indicate that relatively few accidents account for a large share of total property damage, while smaller, single-fatality and single-injury incidents account for a large share of total fatalities and injuries (43% versus 32%, respectively).

Suggested Citation

  • Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
  • Handle: RePEc:eee:ijocip:v:7:y:2014:i:4:p:257-269
    DOI: 10.1016/j.ijcip.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548214000596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Restrepo, Carlos E. & Simonoff, Jeffrey S. & Zimmerman, Rae, 2009. "Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 38-50.
    2. Felder, Frank A., 2009. "A critical assessment of energy accident studies," Energy Policy, Elsevier, vol. 37(12), pages 5744-5751, December.
    3. Sovacool, Benjamin K., 2008. "The costs of failure: A preliminary assessment of major energy accidents, 1907-2007," Energy Policy, Elsevier, vol. 36(5), pages 1802-1820, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berke Ogulcan Parlak & Huseyin Ayhan Yavasoglu, 2023. "A Comprehensive Analysis of In-Line Inspection Tools and Technologies for Steel Oil and Gas Pipelines," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    2. Zhiqiang Xie & Fengshan Jiang & Jiarui Xu & Zhengang Zhai & Jianglong He & Daoyang Zheng & Junyu Lian & Zhiqun Hou & Lei Zhao & Yanxia Wang & Yuyun Feng, 2023. "A Narrative of Urban Underground Pipeline System Disasters in China in 2021: Spatial and Temporal Distribution, Causal Analysis, and Response Strategies," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Jihong Ye & Yiyang Fang & Xinxiang Yang, 2022. "Vulnerability Analysis of Harbor Oil Pipeline Affected by Typhoon," Energies, MDPI, vol. 15(18), pages 1-17, September.
    4. Liu, Shengli & Liang, Yongtu, 2021. "Statistics of catastrophic hazardous liquid pipeline accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Richard A. Schultz & Douglas W. Hubbard & David J. Evans & Sam L. Savage, 2020. "Characterization of Historical Methane Occurrence Frequencies from U.S. Underground Natural Gas Storage Facilities with Implications for Risk Management, Operations, and Regulatory Policy," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 588-607, March.
    6. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    2. Boccard, Nicolas, 2018. "Safety along the energy chain," Energy, Elsevier, vol. 150(C), pages 1018-1030.
    3. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    4. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    5. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    6. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    7. Minh Ha-Duong & Rodica Loisel, 2011. "Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050," Post-Print halshs-00487175, HAL.
    8. Huhtala, Anni & Remes, Piia, 2016. "Dimming Hopes for Nuclear Power: Quantifying the Social Costs of Perceptions of Risks," Working Papers 57, VATT Institute for Economic Research.
    9. Vaezi, Ali & Verma, Manish, 2018. "Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 98-111.
    10. Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    11. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    12. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    13. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    14. Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
    15. Singh, Abhishek Narain & Gupta, M.P. & Ojha, Amitabh, 2014. "Identifying critical infrastructure sectors and their dependencies: An Indian scenario," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(2), pages 71-85.
    16. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    17. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Csereklyei, Zsuzsanna, 2014. "Measuring the impact of nuclear accidents on energy policy," Ecological Economics, Elsevier, vol. 99(C), pages 121-129.
    19. Sovacool, Benjamin K. & Walter, Götz, 2018. "Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment," Energy, Elsevier, vol. 142(C), pages 1074-1082.
    20. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:7:y:2014:i:4:p:257-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.