IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i3p588-607.html
   My bibliography  Save this article

Characterization of Historical Methane Occurrence Frequencies from U.S. Underground Natural Gas Storage Facilities with Implications for Risk Management, Operations, and Regulatory Policy

Author

Listed:
  • Richard A. Schultz
  • Douglas W. Hubbard
  • David J. Evans
  • Sam L. Savage

Abstract

Defining a baseline for the frequency of occurrences at underground natural gas storage facilities is critical to maintaining safe operation and to the development of appropriate risk management plans and regulatory approaches. Currently used frequency‐estimation methods are reviewed and broadened in this article to include critical factors of cause, severity, and uncertainty that contribute to risk. A Bayesian probabilistic analysis characterizes the aleatoric historical occurrence frequencies given imperfect sampling. Frequencies for the three main storage facility types in the United States (depleted oil‐and‐gas field storage, aquifer storage, solution‐mined salt cavern storage) are generally on the order of 3 to 9 × 10–2 occurrences, of all causes (surface, well integrity, subsurface integrity) and severities (nuisance, serious, catastrophic), per facility‐year. Loss of well integrity is associated with many, but not all, occurrences either within the subsurface or from there up to the surface. The probability of one serious or catastrophic leakage occurrence to the ground surface within the next 10 years, assuming constant number of facilities, is approximately 0.1–0.3% for any facility type. Storage operators and industry regulators can use occurrence frequencies, their associated probabilities and uncertainties, and forecasts of severity magnitudes to better prioritize resources, establish a baseline against which progress toward achieving a reduction target could be measured, and develop more effective mitigation/monitoring/reduction programs in a risk management plan.

Suggested Citation

  • Richard A. Schultz & Douglas W. Hubbard & David J. Evans & Sam L. Savage, 2020. "Characterization of Historical Methane Occurrence Frequencies from U.S. Underground Natural Gas Storage Facilities with Implications for Risk Management, Operations, and Regulatory Policy," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 588-607, March.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:3:p:588-607
    DOI: 10.1111/risa.13417
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13417
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    2. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    3. Laura Díaz Anadón & Erin Baker & Valentina Bosetti, 2017. "Integrating uncertainty into public energy research and development decisions," Nature Energy, Nature, vol. 2(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    2. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    3. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    4. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    5. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    6. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    8. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    10. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    11. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    12. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    14. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    15. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    16. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    17. Naomi Aoki, 2018. "Who Would Be Willing to Accept Disaster Debris in Their Backyard? Investigating the Determinants of Public Attitudes in Post‐Fukushima Japan," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 535-547, March.
    18. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    19. Matthew H. Henry & Yacov Y. Haimes, 2009. "A Comprehensive Network Security Risk Model for Process Control Networks," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 223-248, February.
    20. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:3:p:588-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.