IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i11p1969-1986.html
   My bibliography  Save this article

Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools

Author

Listed:
  • Michael Greenberg
  • Paul Lioy
  • Birnur Ozbas
  • Nancy Mantell
  • Sastry Isukapalli
  • Michael Lahr
  • Tayfur Altiok
  • Joseph Bober
  • Clifton Lacy
  • Karen Lowrie
  • Henry Mayer
  • Jennifer Rovito

Abstract

We built three simulation models that can assist rail transit planners and operators to evaluate high and low probability rail‐centered hazard events that could lead to serious consequences for rail‐centered networks and their surrounding regions. Our key objective is to provide these models to users who, through planning with these models, can prevent events or more effectively react to them. The first of the three models is an industrial systems simulation tool that closely replicates rail passenger traffic flows between New York Penn Station and Trenton, New Jersey. Second, we built and used a line source plume model to trace chemical plumes released by a slow‐moving freight train that could impact rail passengers, as well as people in surrounding areas. Third, we crafted an economic simulation model that estimates the regional economic consequences of a variety of rail‐related hazard events through the year 2020. Each model can work independently of the others. However, used together they help provide a coherent story about what could happen and set the stage for planning that should make rail‐centered transport systems more resistant and resilient to hazard events. We highlight the limitations and opportunities presented by using these models individually or in sequence.

Suggested Citation

  • Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:11:p:1969-1986
    DOI: 10.1111/risa.12073
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12073
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Greenberg & Charles Haas & Anthony Cox & Karen Lowrie & Katherine McComas & Warner North, 2012. "Ten Most Important Accomplishments in Risk Analysis, 1980–2010," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 771-781, May.
    2. Michael Greenberg & Michael Frisch & Tyler Miller & David Lewis, 2003. "Facing an uncertain economic future: Environmental management spending and rural regions surrounding the U.S. DOE's nuclear weapons facilities," Defence and Peace Economics, Taylor & Francis Journals, vol. 14(1), pages 85-97.
    3. Vicki M. Bier, 2007. "Choosing What to Protect," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 607-620, June.
    4. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    5. Hua Li & George E. Apostolakis & Joseph Gifun & William VanSchalkwyk & Susan Leite & David Barber, 2009. "Ranking the Risks from Multiple Hazards in a Small Community," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 438-456, March.
    6. Klaus Conrad, 1997. "Traffic, transportation, infrastructure and externalities A theoretical framework for a CGE analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(4), pages 369-389.
    7. Alicia H. Munnell, 1992. "Policy Watch: Infrastructure Investment and Economic Growth," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 189-198, Fall.
    8. Michael R. Greenberg & Michael Lahr & Nancy Mantell, 2007. "Understanding the Economic Costs and Benefits of Catastrophes and Their Aftermath: A Review and Suggestions for the U.S. Federal Government," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 83-96, February.
    9. Maria Leung & James H. Lambert & Alexander Mosenthal, 2004. "A Risk‐Based Approach to Setting Priorities in Protecting Bridges Against Terrorist Attacks," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 963-984, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    2. Hui Xu & Liudan Jiao & Shulin Chen & Milan Deng & Ningxin Shen, 2018. "An Innovative Approach to Determining High-Risk Nodes in a Complex Urban Rail Transit Station: A Perspective of Promoting Urban Sustainability," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    3. Ali Jamshidi & Shahrzad Faghih‐Roohi & Siamak Hajizadeh & Alfredo Núñez & Robert Babuska & Rolf Dollevoet & Zili Li & Bart De Schutter, 2017. "A Big Data Analysis Approach for Rail Failure Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1495-1507, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenberg & Charles Haas & Anthony Cox & Karen Lowrie & Katherine McComas & Warner North, 2012. "Ten Most Important Accomplishments in Risk Analysis, 1980–2010," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 771-781, May.
    2. Michael R. Greenberg & Karen Lowrie & Henry Mayer & Tayfur Altiok, 2011. "Risk‐Based Decision Support Tools: Protecting Rail‐Centered Transit Corridors from Cascading Effects," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1849-1858, December.
    3. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Nijkamp, Peter & Ubbels, Barry, 1999. "Infrastructure, suprastructure and ecostructure : a portfolio of sustainable growth potentials," Serie Research Memoranda 0051, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    5. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    6. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    7. Seyed Aziz Arman & Ahmad salah manesh & Amin Tabaeh Izady, 2015. "Design of a CGE Model to Evaluate Investment in Transport Infrastructures: An Application for Iran," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(3), pages 532-545, March.
    8. Yacov Y. Haimes & Kenneth Crowther & Barry M. Horowitz, 2008. "Homeland security preparedness: Balancing protection with resilience in emergent systems," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 287-308, December.
    9. Yacov Y. Haimes, 2011. "On the Complex Quantification of Risk: Systems‐Based Perspective on Terrorism," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1175-1186, August.
    10. Joost R. Santos & Lucia Castro Herrera & Krista Danielle S. Yu & Sheree Ann T. Pagsuyoin & Raymond R. Tan, 2014. "State of the Art in Risk Analysis of Workforce Criticality Influencing Disaster Preparedness for Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1056-1068, June.
    11. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    12. Raffaello Bronzini & Paolo Piselli, 2006. "Determinants of long-run regional productivity: the role of R&D, human capital and public infrastructure," Temi di discussione (Economic working papers) 597, Bank of Italy, Economic Research and International Relations Area.
    13. Zhenhua Chen & Kingsley Haynes, 2015. "Multilevel assessment of public transportation infrastructure: a spatial econometric computable general equilibrium approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(3), pages 663-685, May.
    14. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    15. Gulyani, Sumila, 2001. "Effects of Poor Transportation on Lean Production and Industrial Clustering: Evidence from the Indian Auto Industry," World Development, Elsevier, vol. 29(7), pages 1157-1177, July.
    16. Haughwout, Andrew F., 1998. "Aggregate Production Functions, Interregional Equilibrium, and the Measurement of Infrastructure Productivity," Journal of Urban Economics, Elsevier, vol. 44(2), pages 216-227, September.
    17. Josh Ryan-Collins, 2015. "Is Monetary Financing Inflationary? A Case Study of the Canadian Economy, 1935-75," Economics Working Paper Archive wp_848, Levy Economics Institute.
    18. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    19. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    20. Antonio Soares Martins Neto & Gilberto Tadeu Lima, 2017. "Competitive Exchange Rate and Public Infrastructure in a Macrodynamic of Economic Growth," Metroeconomica, Wiley Blackwell, vol. 68(4), pages 792-815, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:11:p:1969-1986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.