IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp1018-1030.html
   My bibliography  Save this article

Safety along the energy chain

Author

Listed:
  • Boccard, Nicolas

Abstract

We tackle the incidence of accidents within the energy supply chain and firstly extend the analysis from severe accidents to smaller ones. We are then able to go beyond fossil fuels technologies and estimate the hazard rate (ratio of casualties to energy) of wind power, the electricity network and the nuclear sector (for latent victims). Technologies are ranked, separately in the developed and developing worlds. In a second part, we compute the risk rate (ratio of casualties to population) for a variety of countries, accounting for the energy mix and imports; differences are found to be less glaring than for hazard rates. Lastly, we compare this risk of energy supply with the negative health impacts of energy consumption such as atmospheric pollution and road accidents. We find that for every casualty within the energy supply chain, there is a hundred more casualties among end-users in the developed countries and a thousand more in the developing ones. These stark differences call for giving priority to policies aimed at reducing the negative externalities of energy production and consumption.

Suggested Citation

  • Boccard, Nicolas, 2018. "Safety along the energy chain," Energy, Elsevier, vol. 150(C), pages 1018-1030.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:1018-1030
    DOI: 10.1016/j.energy.2018.02.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830361X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Steinberger, Julia K. & Roberts, J. Timmons, 2010. "From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975-2005," Ecological Economics, Elsevier, vol. 70(2), pages 425-433, December.
    2. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    3. Felder, Frank A., 2009. "A critical assessment of energy accident studies," Energy Policy, Elsevier, vol. 37(12), pages 5744-5751, December.
    4. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    5. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    6. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    7. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    8. Sovacool, Benjamin K., 2008. "The costs of failure: A preliminary assessment of major energy accidents, 1907-2007," Energy Policy, Elsevier, vol. 36(5), pages 1802-1820, May.
    9. Ribas, Aline & Lucena, André F.P. & Schaeffer, Roberto, 2017. "Bridging the energy divide and securing higher collective well-being in a climate-constrained world," Energy Policy, Elsevier, vol. 108(C), pages 435-450.
    10. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    2. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    3. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    4. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    5. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    6. Minh Ha-Duong & Rodica Loisel, 2011. "Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050," Post-Print halshs-00487175, HAL.
    7. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    9. Wang, Yuxin & Fu, Gui & Lyu, Qian & Wu, Yali & Jia, Qinsong & Yang, Xiaoyu & Li, Xiao, 2022. "Reform and development of coal mine safety in China: An analysis from government supervision, technical equipment, and miner education," Resources Policy, Elsevier, vol. 77(C).
    10. Bizet, Romain & Bonev, Petyo & Leveque, Francois, 2020. "The effect of local monitoring on nuclear safety and compliance: Evidence from France," Economics Working Paper Series 2014, University of St. Gallen, School of Economics and Political Science.
    11. Savis Gohari Krangsås & Koen Steemers & Thaleia Konstantinou & Silvia Soutullo & Mingming Liu & Emanuela Giancola & Bahri Prebreza & Touraj Ashrafian & Lina Murauskaitė & Nienke Maas, 2021. "Positive Energy Districts: Identifying Challenges and Interdependencies," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    12. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    13. Flávia de Souza Costa Neves Cavazotte & Cristiano José Pereira Duarte & Anna Maria Calvão Gobbo, 2013. "Authentic leader, safe work: the influence of leadership on safety performance," Brazilian Business Review, Fucape Business School, vol. 10(2), pages 95-119, June.
    14. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    15. Gkanas, Evangelos I. & Khzouz, Martin & Panagakos, Grigorios & Statheros, Thomas & Mihalakakou, Giouli & Siasos, Gerasimos I. & Skodras, Georgios & Makridis, Sofoklis S., 2018. "Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications," Energy, Elsevier, vol. 142(C), pages 518-530.
    16. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    17. Spada, Matteo & Paraschiv, Florentina & Burgherr, Peter, 2018. "A comparison of risk measures for accidents in the energy sector and their implications on decision-making strategies," Energy, Elsevier, vol. 154(C), pages 277-288.
    18. Huhtala, Anni & Remes, Piia, 2016. "Dimming Hopes for Nuclear Power: Quantifying the Social Costs of Perceptions of Risks," Working Papers 57, VATT Institute for Economic Research.
    19. Kamenopoulos, Sotiris N. & Tsoutsos, Theocharis, 2015. "Assessment of the safe operation and maintenance of photovoltaic systems," Energy, Elsevier, vol. 93(P2), pages 1633-1638.
    20. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:1018-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.