IDEAS home Printed from https://ideas.repec.org/a/ibn/eerjnl/v8y2018i1p32.html
   My bibliography  Save this article

Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions

Author

Listed:
  • Moahamed Younes El Bouti
  • Mohamed Allouch

Abstract

Oil and Gas Industry (OGI) faces a number of evolving and various types of risks and hazards that give rise to serious incidents. To conduct this study 801 incidents reports have been numerically analyzed, evaluated and interpreted. These incidents reports covered various severity levels, which have been occurred in 6 regions across the world, from 2014 to 2016. The analysis focused on global oil and gas industry. The study has shown that Occupational Work-related Incidents (OWRIs) occur mostly in October and especially in spring time. In addition, it has pointed out that the region of North America is the most affected area; almost one-third of OWRIs occurs in turbine hall area. Surprisingly, the study also revealed that three-quarters of the OWRIs did not occur in High-Risk Activity (HRA) and half of the incidents took place with no tooling involved. Noticeably, the main recurrent and frequent event was struck against or by (SAoB) that resulted dominantly in slight injuries that required only first aid care, and the most affected body part is the finger by “Cut (Laceration)/ Pinch†. The study has confirmed that the hazardous working environment in OGI was the direct cause for half of the OWRIs. However, based on the revealed results, it will be the assumptions that human factors have a crucial impact on the workplace safety and a contributing factor in the incidents. Some control measures were suggested accordingly.

Suggested Citation

  • Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
  • Handle: RePEc:ibn:eerjnl:v:8:y:2018:i:1:p:32
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/eer/article/download/74523/41336
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/eer/article/view/74523
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    2. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    3. Restrepo, Carlos E. & Simonoff, Jeffrey S. & Zimmerman, Rae, 2009. "Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 38-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florentina Paraschiv & Dima Mohamad, 2020. "The Nuclear Power Dilemma—Between Perception and Reality," Energies, MDPI, vol. 13(22), pages 1-19, November.
    2. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    3. Hughes, Larry & de Jong, Moniek & Wang, Xiao Qin, 2016. "A generic method for analyzing the risks to energy systems," Applied Energy, Elsevier, vol. 180(C), pages 895-908.
    4. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    5. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    6. Juan Durango-Cordero & Mehdi Saqalli & Christophe Laplanche & Marine Locquet & Arnaud Elger, 2018. "Spatial Analysis of Accidental Oil Spills Using Heterogeneous Data: A Case Study from the North-Eastern Ecuadorian Amazon," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    7. Spada, Matteo & Paraschiv, Florentina & Burgherr, Peter, 2018. "A comparison of risk measures for accidents in the energy sector and their implications on decision-making strategies," Energy, Elsevier, vol. 154(C), pages 277-288.
    8. Matteo Spada & Peter Burgherr, 2020. "Comparative Risk Assessment for Fossil Energy Chains Using Bayesian Model Averaging," Energies, MDPI, vol. 13(2), pages 1-21, January.
    9. Vaezi, Ali & Verma, Manish, 2018. "Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 98-111.
    10. Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    11. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    12. Singh, Abhishek Narain & Gupta, M.P. & Ojha, Amitabh, 2014. "Identifying critical infrastructure sectors and their dependencies: An Indian scenario," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(2), pages 71-85.
    13. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    15. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    16. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    17. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    18. Rae Zimmerman, 2009. "Making Infrastructure Competitive in an Urban World," The ANNALS of the American Academy of Political and Social Science, , vol. 626(1), pages 226-241, November.
    19. Yun Tang & Ying Wang, 2022. "Learning from Neighbors: The Spatial Spillover Effect of Crisis Learning on Local Government," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    20. Steinhäuser, J. Micha & Eisenack, Klaus, 2020. "How market design shapes the spatial distribution of power plant curtailment costs," Energy Policy, Elsevier, vol. 144(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:eerjnl:v:8:y:2018:i:1:p:32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.