IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222026597.html
   My bibliography  Save this article

Review of the energy forecasting and scheduling model for electric buses

Author

Listed:
  • Lim, Lek Keng
  • Muis, Zarina Ab
  • Ho, Wai Shin
  • Hashim, Haslenda
  • Bong, Cassendra Phun Chien

Abstract

Electric buses are getting more interest to be implemented in the public transport sector by different countries as a carbon mitigation strategy. However, there are a few issues with electric buses such as limited driving range and long recharging time compared to the conventional diesel bus. Due to its limited energy storage, estimation of the energy consumption for the electric buses becomes a crucial research area to prevent sufficient energy for electric buses during the service. The long recharging time of the electric buses requires a vehicle and a charging scheduling to ensure fulfilling the passenger demand without compromising the energy demand. The paper will review the state-of-the-art model for the energy forecasting model of the electric buses and electric bus charging scheduling models. The paper then compares the parameter in the energy forecasting model, the optimization objective, the charger technology, the charging pattern, and the constraint in the electric bus scheduling model. The purpose is to provide a well-structured comprehensive review on these energy forecasting and electric bus charging scheduling for engineers, researchers, investors, policy makers, bus depot companies, and other interested parties.

Suggested Citation

  • Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222026597
    DOI: 10.1016/j.energy.2022.125773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    4. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    5. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    7. Rinaldi, Marco & Picarelli, Erika & D'Ariano, Andrea & Viti, Francesco, 2020. "Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications," Omega, Elsevier, vol. 96(C).
    8. Saadon Al-Ogaili, Ali & Ramasamy, Agileswari & Juhana Tengku Hashim, Tengku & Al-Masri, Ahmed N. & Hoon, Yap & Neamah Jebur, Mustafa & Verayiah, Renuga & Marsadek, Marayati, 2020. "Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study," Applied Energy, Elsevier, vol. 280(C).
    9. Yiming Bie & Mingjie Hao & Mengzhu Guo, 2021. "Optimal Electric Bus Scheduling Based on the Combination of All-Stop and Short-Turning Strategies," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    11. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    12. Feng Mao & Zhiheng Li & Kai Zhang, 2021. "A Comparison of Carbon Dioxide Emissions between Battery Electric Buses and Conventional Diesel Buses," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    13. Zaneti, Letícia A.L. & Arias, Nataly Bañol & de Almeida, Madson C. & Rider, Marcos J., 2022. "Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    15. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    16. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    17. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    18. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    19. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2020. "Comprehensive energy modeling methodology for battery electric buses," Energy, Elsevier, vol. 207(C).
    20. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    21. Guo, Hongqiang & Lu, Silong & Hui, Hongzhong & Bao, Chunjiang & Shangguan, Jinyong, 2019. "Receding horizon control-based energy management for plug-in hybrid electric buses using a predictive model of terminal SOC constraint in consideration of stochastic vehicle mass," Energy, Elsevier, vol. 176(C), pages 292-308.
    22. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    23. Xie, Shanshan & He, Hongwen & Peng, Jiankun, 2017. "An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 196(C), pages 279-288.
    24. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    25. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    26. Mengyan Jiang & Yi Zhang & Yi Zhang, 2021. "Multi-Depot Electric Bus Scheduling Considering Operational Constraint and Partial Charging: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 14(1), pages 1-20, December.
    27. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    28. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    29. He, Hongwen & Yan, Mei & Sun, Chao & Peng, Jiankun & Li, Menglin & Jia, Hui, 2018. "Predictive air-conditioner control for electric buses with passenger amount variation forecast☆," Applied Energy, Elsevier, vol. 227(C), pages 249-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, Yuan & Bie, Yiming & Liu, Ziyan & Zhu, Aoze, 2024. "Collaborative vehicle-crew scheduling for multiple routes with a mixed fleet of electric and fuel buses," Energy, Elsevier, vol. 298(C).
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    3. Momcilovic, Vladimir & Dimitrijevic, Branka & Stokic, Marko, 2023. "Supercapacitor electric bus modeling and simulation framework," Energy, Elsevier, vol. 282(C).
    4. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2023. "A novel method for co-optimizing battery sizing and charging strategy of battery electric bus fleets: An application to the city of Paris," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    3. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    4. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    5. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    7. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
    8. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    9. Cui, Shaohua & Gao, Kun & Yu, Bin & Ma, Zhenliang & Najafi, Arsalan, 2023. "Joint optimal vehicle and recharging scheduling for mixed bus fleets under limited chargers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    10. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    11. Shehabeldeen, Ali & Foda, Ahmed & Mohamed, Moataz, 2024. "A multi-stage optimization of battery electric bus transit with battery degradation," Energy, Elsevier, vol. 299(C).
    12. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    13. Basso, Franco & Feijoo, Felipe & Pezoa, Raúl & Varas, Mauricio & Vidal, Brian, 2024. "The impact of electromobility in public transport: An estimation of energy consumption using disaggregated data in Santiago, Chile," Energy, Elsevier, vol. 286(C).
    14. Battaïa, Olga & Dolgui, Alexandre & Guschinsky, Nikolai & Kovalyov, Mikhail Y., 2023. "Designing fast-charge urban electric bus services: An Integer Linear Programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    15. Guschinsky, Nikolai & Kovalyov, Mikhail Y. & Pesch, Erwin & Rozin, Boris, 2023. "Cost minimizing decisions on equipment and charging schedule for electric buses in a single depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    16. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    17. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    18. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    19. He, Yi & Liu, Zhaocai & Zhang, Yiming & Song, Ziqi, 2023. "Time-dependent electric bus and charging station deployment problem," Energy, Elsevier, vol. 282(C).
    20. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222026597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.