IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v180y2023ics1366554523003502.html
   My bibliography  Save this article

Double-battery configuration method for electric bus operation in cold regions

Author

Listed:
  • Cong, Yuan
  • Wang, Heqi
  • Bie, Yiming
  • Wu, Jiabin

Abstract

Managing the energy supply of electric buses (EBs) is critical to balance operational reliability and cost reduction. However, ambient temperature significantly affects energy consumption, posing challenges in providing adequate energy supply, especially in cold regions. In this study, we propose a double-battery configuration approach for EBs operating in cold regions with substantial temperature variations between seasons. The method involves utilizing a higher-capacity battery during winter months and a lower-capacity battery for summer operations. To determine the optimal fleet size, battery capacities, and EB scheduling plans in both winter and summer seasons, we formulate an integer programming model, focusing on minimizing the fleet's average annual operating costs (OC) and carbon emissions (CE). The model is solved using the branch and bound method. A case study is conducted, examining EB routes in 11 cold cities. Results reveal that the double-battery configuration method effectively reduces the fleet's average annual OC and CE. Specifically, the reduction ratio range for OC is from 3.34% to 5.18%, while the reduction ratio for CE ranges from 4.06% to 5.16%.

Suggested Citation

  • Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003502
    DOI: 10.1016/j.tre.2023.103362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.