IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v655y2024ics037843712400699x.html
   My bibliography  Save this article

Optimal control strategy for electric vehicle platoons in dynamic wireless charging lane considering charge demand differences

Author

Listed:
  • Wang, Yang
  • Ma, Minghui
  • Liang, Shidong
  • Wang, Yansong
  • Liu, Ningning

Abstract

During peak traffic hours in merging areas, traffic demand often exceeds supply, making it difficult to eliminate traffic congestion, though it can be mitigated to some extent. As a result, congestion is inevitable. Deploying Dynamic Wireless Charging (DWC) lanes in these low-speed zones can provide electric vehicles with more charging time during unavoidable congestion. Based on this analysis, DWC lanes could be strategically located near frequently congested merging areas. However, by applying certain control measures and guiding vehicles to adjust their speed during congestion, low-battery vehicles can receive more charging time, while high-battery vehicles can accelerate through the merging area, creating a win-win scenario. Existing research focuses on intersections and single-vehicle charging, overlooking potential applications near merging areas and the varying charging needs among vehicles. To address this gap, this paper introduces an optimized control strategy for electric vehicle platoons considering their charging requirements. The proposed scheme assumes DWC lanes are deployed ahead of merging areas in congested ways, leveraging low-speed movement during merging for charging. We assign different charging values to each vehicle based on battery levels, providing a solid basis for control. In order to manage platoons with varying battery capacities, we propose two control schemes for platoon leaders: Self-oriented Control and Group-oriented Control. At the microscopic level, we consider the impact of car-following models on fleet behavior, employing a different car-following models for control. At the macroscopic level, we design experiments on mainline and ramp sections under various Market Penetration Rates (MPRs) to assess the impact of intelligent connected vehicle penetration on traffic flow. Finally, we validate the proposed control strategies using SUMO simulations. Self-oriented Control and Group-oriented Control each prove effective in different scenarios. Furthermore, inappropriate selection of car-following models during simulations may lead to erroneous conclusions. This study underscores the potential of connected and autonomous vehicles in addressing diverse charging needs on DWC facilities.

Suggested Citation

  • Wang, Yang & Ma, Minghui & Liang, Shidong & Wang, Yansong & Liu, Ningning, 2024. "Optimal control strategy for electric vehicle platoons in dynamic wireless charging lane considering charge demand differences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
  • Handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s037843712400699x
    DOI: 10.1016/j.physa.2024.130190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400699X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2023. "Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks," Energy, Elsevier, vol. 263(PE).
    2. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2023. "Smart techno-economic operation of electric vehicle charging station in Egypt," Energy, Elsevier, vol. 264(C).
    3. Liu, Yuechen Sophia & Tayarani, Mohammad & Gao, H. Oliver, 2022. "An activity-based travel and charging behavior model for simulating battery electric vehicle charging demand," Energy, Elsevier, vol. 258(C).
    4. Ye, Zuzhao & Bragin, Mikhail A. & Yu, Nanpeng & Wei, Ran, 2024. "Joint planning of dynamic wireless charging lanes and power delivery infrastructure for heavy-duty drayage trucks," Applied Energy, Elsevier, vol. 375(C).
    5. Mubarak, Mamdouh & Üster, Halit & Abdelghany, Khaled & Khodayar, Mohammad, 2021. "Strategic network design and analysis for in-motion wireless charging of electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    7. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    8. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).
    9. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    10. Bie, Yiming & Qin, Wei & Wu, Jiabin, 2024. "Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid," Applied Energy, Elsevier, vol. 372(C).
    11. Zhao, Fangxia & Shang, HuaYan & Cui, JiHui, 2023. "Role of electric vehicle driving behavior on optimal setting of wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    12. Bi, Zicheng & Keoleian, Gregory A. & Ersal, Tulga, 2018. "Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization," Applied Energy, Elsevier, vol. 225(C), pages 1090-1101.
    13. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    14. Jin, Zuan & Ma, Minghui & Liang, Shidong & Yao, Hongguang, 2024. "Differential variable speed limit control strategy consider lane assignment at the freeway lane drop bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    15. Liu, Qingling & Xu, Xiaowen, 2024. "A platoon-based eco-driving control mechanism for low-density traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    17. Lee, Sangmin & Boomsma, Trine Krogh, 2022. "An approximate dynamic programming algorithm for short-term electric vehicle fleet operation under uncertainty," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Jinhua & Wang, Linhong & Yang, Menglin & Bie, Yiming & Hao, Mingjie, 2024. "Optimal deployment of dynamic wireless charging facilities for electric bus route considering stochastic travel times," Energy, Elsevier, vol. 289(C).
    2. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    3. Chen, Jie & Hu, Maobin & Shi, Congling, 2023. "Development of eco-routing guidance for connected electric vehicles in urban traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    4. Yudai Honma & Daisuke Hasegawa & Katsuhiro Hata & Takashi Oguchi, 2024. "Locational Analysis of In-motion Wireless Power Transfer System for Long-distance Trips by Electric Vehicles: Optimal Locations and Economic Rationality in Japanese Expressway Network," Networks and Spatial Economics, Springer, vol. 24(1), pages 261-290, March.
    5. Wang, Pangwei & Wang, Xindi & Ye, Rongsheng & Sun, Yuanzhe & Liu, Cheng & Zhang, Juan, 2024. "Eco-driving-based mixed vehicular platoon control model for successive signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    6. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    7. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    8. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    9. Xiao, Guosheng & Yao, Zhihong & Zhang, Shimiao & Jiang, Yangsheng, 2024. "Cooperative eco-driving for mixed platoons at signalized intersections with wireless charging lanes," Energy, Elsevier, vol. 313(C).
    10. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    12. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    13. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    14. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    15. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    16. Zhang, Lang & Ding, Heng & Feng, Zhen & Wang, Liangwen & Di, Yunran & Zheng, Xiaoyan & Wang, Shiguang, 2024. "Variable speed limit control strategy considering traffic flow lane assignment in mixed-vehicle driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
    17. Wang, Tao & Guo, Jia & Zhang, Wei & Wang, Kai & Qu, Xiaobo, 2024. "On the planning of zone-based electric on-demand minibus," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    18. Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
    19. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    20. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s037843712400699x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.