IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029590.html
   My bibliography  Save this article

Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks

Author

Listed:
  • Zhou, Ze
  • Liu, Zhitao
  • Su, Hongye
  • Zhang, Liyan

Abstract

Dynamic wireless charging technology can promote the popularization of electric vehicles due to its role in alleviating range anxiety. It is necessary to consider it as a significant charging method in future urban scenarios. The development of EVs and charging facilities has brought about the electrification of transportation, forming a power-traffic system. To maximize the comprehensive performance of the system, this paper proposes a planning strategy for the coexistence of static and dynamic charging facilities. First, considering the response of vehicle users in the transportation network to the planned results, we design a bi-level optimization framework. Then, in the lower-level optimization model, taking into account the charging demands of different vehicles, we construct a multi-class user equilibrium model and adopt a modified adaptive path generation algorithm and a variable update factor algorithm to solve the traffic assignment problem. In the upper level, we utilize an evaluation indicator to indicate the comprehensive performance of the system, and the evaluation indicator is minimized under constraints on the capacities, charging prices, and usage prices of hybrid charging facilities. Then, an algorithm based on the surrogate model is introduced to solve the bi-level programming. Finally, the case studies demonstrate the advantages of hybrid charging facilities as well as the feasibility and effectiveness of the solution algorithm.

Suggested Citation

  • Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2023. "Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029590
    DOI: 10.1016/j.energy.2022.126073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    2. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    4. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    5. Sheng, Yujie & Guo, Qinglai & Chen, Feng & Xu, Luo & Zhang, Yang, 2021. "Coordinated pricing of coupled urban Power-Traffic Networks: The value of information sharing," Applied Energy, Elsevier, vol. 301(C).
    6. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2019. "Scenario-based comprehensive expansion planning model for a coupled transportation and active distribution system," Applied Energy, Elsevier, vol. 255(C).
    7. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    8. Lv, Si & Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan, 2021. "Integrated demand response for congestion alleviation in coupled power and transportation networks," Applied Energy, Elsevier, vol. 283(C).
    9. Liu, Haoxiang & Zou, Yuncheng & Chen, Ya & Long, Jiancheng, 2021. "Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2022. "Integrated pricing strategy for coordinating load levels in coupled power and transportation networks," Applied Energy, Elsevier, vol. 307(C).
    2. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    3. Gu, Chenjia & Zhang, Yao & Wang, Jianxue & Li, Qingtao, 2021. "Joint planning of electrical storage and gas storage in power-gas distribution network considering high-penetration electric vehicle and gas vehicle," Applied Energy, Elsevier, vol. 301(C).
    4. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    5. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    6. Lv, Si & Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan, 2021. "Integrated demand response for congestion alleviation in coupled power and transportation networks," Applied Energy, Elsevier, vol. 283(C).
    7. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    8. Diaz-Cachinero, Pablo & Muñoz-Hernandez, Jose Ignacio & Contreras, Javier, 2021. "Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management," Applied Energy, Elsevier, vol. 304(C).
    9. Francesco Lo Franco & Vincenzo Cirimele & Mattia Ricco & Vitor Monteiro & Joao L. Afonso & Gabriele Grandi, 2022. "Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    10. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    11. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    12. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    13. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    14. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    15. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    16. Sheng, Yujie & Guo, Qinglai & Chen, Feng & Xu, Luo & Zhang, Yang, 2021. "Coordinated pricing of coupled urban Power-Traffic Networks: The value of information sharing," Applied Energy, Elsevier, vol. 301(C).
    17. Cai, Zeen & Mo, Dong & Geng, Maosi & Tang, Wei & Chen, Xiqun Michael, 2023. "Integrating ride-sourcing with electric vehicle charging under mixed fleets and differentiated services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    18. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    19. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    20. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.