IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12077-d923962.html
   My bibliography  Save this article

Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning

Author

Listed:
  • Francesco Lo Franco

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Vincenzo Cirimele

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Mattia Ricco

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Vitor Monteiro

    (Department of Industrial Electronics, University of Minho, Azurem, 4800-058 Guimarães, Portugal)

  • Joao L. Afonso

    (Department of Industrial Electronics, University of Minho, Azurem, 4800-058 Guimarães, Portugal)

  • Gabriele Grandi

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

Abstract

Electric car-sharing (ECS) is an increasingly popular service in many European cities. The management of an ECS fleet is more complex than its thermal engine counterpart due to the longer ”refueling“ time and the limited autonomy of the vehicles. To ensure adequate autonomy, the ECS provider needs high-capacity charging hubs located in urban areas where available peak power is often limited by the system power rating. Lastly, electric vehicle (EV) charging is typically entrusted to operators who retrieve discharged EVs in the city and connect them to the charging hub. The timing of the whole charging process may strongly differ among the vehicles due to their different states of charge on arrival at the hub. This makes it difficult to plan the charging events and leads to non-optimal exploitation of charging points. This paper provides a smart charging (SC) method that aims to support the ECS operators’ activity by optimizing the charging points’ utilization. The proposed SC promotes charging duration management by differently allocating powers among vehicles as a function of their state of charge and the desired end-of-charge time. The proposed method has been evaluated by considering a real case study. The results showed the ability to decrease charging points downtime by 71.5% on average with better exploitation of the available contracted power and an increase of 18.8% in the average number of EVs processed per day.

Suggested Citation

  • Francesco Lo Franco & Vincenzo Cirimele & Mattia Ricco & Vitor Monteiro & Joao L. Afonso & Gabriele Grandi, 2022. "Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12077-:d:923962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Benjamin Schaden & Thomas Jatschka & Steffen Limmer & Günther Robert Raidl, 2021. "Smart Charging of Electric Vehicles Considering SOC-Dependent Maximum Charging Powers," Energies, MDPI, vol. 14(22), pages 1-33, November.
    3. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    4. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    5. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    6. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lo Franco & Mattia Ricco & Vincenzo Cirimele & Valerio Apicella & Benedetto Carambia & Gabriele Grandi, 2023. "Electric Vehicle Charging Hub Power Forecasting: A Statistical and Machine Learning Based Approach," Energies, MDPI, vol. 16(4), pages 1-27, February.
    2. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    3. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    4. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    5. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Rafał Różycki & Joanna Józefowska & Krzysztof Kurowski & Tomasz Lemański & Tomasz Pecyna & Marek Subocz & Grzegorz Waligóra, 2022. "A Quantum Approach to the Problem of Charging Electric Cars on a Motorway," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Hugo Guyader & Margareta Friman & Lars E. Olsson, 2021. "Shared Mobility: Evolving Practices for Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    8. Gu, Wei & Luo, Jing & Yu, Xiaoru & Zhang, Wenqing & Li, Baixun, 2023. "Dynamic decisions between sellers and consumers in online second-hand trading platforms: Evidence from C2C transactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    9. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Franck Le Gall & Ehsan Sedgh Gooya, 2022. "Home Energy Management Considering Renewable Resources, Energy Storage, and an Electric Vehicle as a Backup," Energies, MDPI, vol. 15(8), pages 1-20, April.
    10. Roman Roaljdovich Sidorchuk & Anastasia Vladimirovna Lukina & Sergey Vladimirovich Mkhitaryan & Irina Ivanovna Skorobogatykh & Anastasia Alexeevna Stukalova, 2021. "Local Resident Attitudes to the Sustainable Development of Urban Public Transport System," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    11. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    12. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    13. Andrzej Kubik & Katarzyna Turoń & Piotr Folęga & Feng Chen, 2023. "CO 2 Emissions—Evidence from Internal Combustion and Electric Engine Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 16(5), pages 1-21, February.
    14. Yoo, Seung Ho & Choi, Thomas Y. & Sheu, Jiuh-Biing, 2021. "Electric vehicles and product–service platforms: Now and in future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    16. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2023. "Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks," Energy, Elsevier, vol. 263(PE).
    17. Chen, Mingyang & Zhao, Daozhi & Gong, Yeming & Rekik, Yacine, 2022. "An on-demand service platform with self-scheduling capacity: Uniform versus multiplier-based pricing," International Journal of Production Economics, Elsevier, vol. 243(C).
    18. Zhou, Yuekuan, 2023. "A dynamic self-learning grid-responsive strategy for battery sharing economy—multi-objective optimisation and posteriori multi-criteria decision making," Energy, Elsevier, vol. 266(C).
    19. Lazher Mejdi & Faten Kardous & Khaled Grayaa, 2022. "Impact Analysis and Optimization of EV Charging Loads on the LV Grid: A Case Study of Workplace Parking in Tunisia," Energies, MDPI, vol. 15(19), pages 1-18, September.
    20. Sun, Dexi & Xia, Jianjun, 2023. "Research on road transport planning aiming at near zero carbon emissions: Taking Ruicheng County as an example," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12077-:d:923962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.