IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500739x.html
   My bibliography  Save this article

Resource configuration and daily operational scheduling for urban electric bus route under the hybrid power supply strategy

Author

Listed:
  • Bie, Yiming
  • Zhou, Haolin
  • Yang, Menglin

Abstract

Currently, numerous cities are adopting electric buses (EBs) to replace fuel-powered buses. However, due to higher electricity prices during the daytime, transit operators face higher charging costs when EBs are charged during daytime hours. This paper proposes a hybrid “Energy Storage System-Power Grid (ESS-PG)” power supply strategy, wherein the ESS is deployed at EB terminals. This system is charged using the PG during off-peak hours at night with lower electricity prices. The stored energy is then used to charge EBs during daytime operations, thereby reducing the charging costs for transit operators. To determine the optimal ESS capacity, EB battery capacity, EB fleet size, EB trip and charging schedules within the hybrid power supply strategy, we develop a collaborative optimization model that integrates the full lifecycle system resource configuration and daily operational scheduling schemes for the EB route. The model is solved using a combination of branch-and-bound and an improved two-stage genetic algorithm. The effectiveness of the proposed method is validated using a real-world EB route. Results indicate that, in comparison to the unitary PG energy supply strategy, the proposed strategy can save 21.2 % of operating costs and reduced carbon emissions by 60.2 tons for the EB route.

Suggested Citation

  • Bie, Yiming & Zhou, Haolin & Yang, Menglin, 2025. "Resource configuration and daily operational scheduling for urban electric bus route under the hybrid power supply strategy," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500739x
    DOI: 10.1016/j.energy.2025.135097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500739X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cong, Yuan & Bie, Yiming & Liu, Ziyan & Zhu, Aoze, 2024. "Collaborative vehicle-crew scheduling for multiple routes with a mixed fleet of electric and fuel buses," Energy, Elsevier, vol. 298(C).
    2. Liu, Xiaohan & Yeh, Sonia & Plötz, Patrick & Ma, Wenxi & Li, Feng & Ma, Xiaolei, 2024. "Electric bus charging scheduling problem considering charging infrastructure integrated with solar photovoltaic and energy storage systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    3. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    4. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    5. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    7. Du, Jiuyu & Zhang, Xiaobin & Wang, Tianze & Song, Ziyou & Yang, Xueqing & Wang, Hewu & Ouyang, Minggao & Wu, Xiaogang, 2018. "Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system," Energy, Elsevier, vol. 165(PA), pages 153-163.
    8. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
    9. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Bie, Yiming & Qin, Wei & Wu, Jiabin, 2024. "Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid," Applied Energy, Elsevier, vol. 372(C).
    11. Rong-Ceng Leou & Jeng-Jiun Hung, 2017. "Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations," Energies, MDPI, vol. 10(4), pages 1-17, April.
    12. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    13. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    14. Ji, Jinhua & Wang, Linhong & Yang, Menglin & Bie, Yiming & Hao, Mingjie, 2024. "Optimal deployment of dynamic wireless charging facilities for electric bus route considering stochastic travel times," Energy, Elsevier, vol. 289(C).
    15. Jeroen C. J. M. van den Bergh & Arild Angelsen & Andrea Baranzini & W. J. W. Botzen & Stefano Carattini & Stefan Drews & Tessa Dunlop & Eric Galbraith & Elisabeth Gsottbauer & Richard B. Howarth & Emi, 2020. "A dual-track transition to global carbon pricing," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1057-1069, October.
    16. Syed Muhammad Arif & Tek Tjing Lie & Boon Chong Seet & Syed Muhammad Ahsan & Hassan Abbas Khan, 2020. "Plug-In Electric Bus Depot Charging with PV and ESS and Their Impact on LV Feeder," Energies, MDPI, vol. 13(9), pages 1-16, April.
    17. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Avenali, Alessandro & De Santis, Daniele & Giagnorio, Mirko & Matteucci, Giorgio, 2024. "Bus fleet decarbonization under macroeconomic and technological uncertainties: A real options approach to support decision-making," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    3. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Cong, Yuan & Bie, Yiming & Liu, Ziyan & Zhu, Aoze, 2024. "Collaborative vehicle-crew scheduling for multiple routes with a mixed fleet of electric and fuel buses," Energy, Elsevier, vol. 298(C).
    5. McCluskey, Jac & Druitt, Tom & Larkin, Charles, 2025. "Sustainability in transit: Assessing the economic case for electric bus adoption in the UK," Transport Policy, Elsevier, vol. 162(C), pages 493-508.
    6. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. Cui, Shaohua & Gao, Kun & Yu, Bin & Ma, Zhenliang & Najafi, Arsalan, 2023. "Joint optimal vehicle and recharging scheduling for mixed bus fleets under limited chargers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    8. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    9. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    10. Guschinsky, Nikolai & Kovalyov, Mikhail Y. & Pesch, Erwin & Rozin, Boris, 2023. "Cost minimizing decisions on equipment and charging schedule for electric buses in a single depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    11. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    12. Mingye Zhang & Moataz Mohamed & Ahmed Foda & Yihua Guo, 2025. "Optimal Electric Bus Charging Scheduling with Multiple Vehicle and Charger Types Considering Compatibility," Sustainability, MDPI, vol. 17(8), pages 1-22, April.
    13. Peng, Yiyang & Li, Guoyuan & Xu, Min & Chen, Anthony, 2024. "Mixed-fleet operation of battery electric bus and hydrogen bus: Considering limited depot size with flexible refueling processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    14. Nathalie Marion Frieß & Ulrich Pferschy, 2024. "Planning a zero-emission mixed-fleet public bus system with minimal life cycle cost," Public Transport, Springer, vol. 16(1), pages 39-79, March.
    15. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    16. Hu, Xiuyu & Li, Hailong & Xie, Chi, 2025. "Optimal charging scheduling of an electric bus fleet with photovoltaic-storage-charging stations," Applied Energy, Elsevier, vol. 390(C).
    17. Stokić, Marko & Dimitrijević, Branka, 2025. "Model for electrification of urban public transport lines with supercapacitor buses: A case study of Belgrade," Applied Energy, Elsevier, vol. 377(PD).
    18. Jing Wang & Heqi Wang & Chunguang Wang, 2023. "Optimal Charging Pile Configuration and Charging Scheduling for Electric Bus Routes Considering the Impact of Ambient Temperature on Charging Power," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    19. Boud Verbrugge & Abdul Mannan Rauf & Haaris Rasool & Mohamed Abdel-Monem & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Real-Time Charging Scheduling and Optimization of Electric Buses in a Depot," Energies, MDPI, vol. 15(14), pages 1-18, July.
    20. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500739x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.