IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v154y2021ics136655452100209x.html
   My bibliography  Save this article

Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile

Author

Listed:
  • Zhang, Le
  • Wang, Shuaian
  • Qu, Xiaobo

Abstract

This study aims to determine the battery electric bus service and charging strategy to minimize the total operational cost of transit system, where the cost incurred by battery degradation and non-linear charging profile is taken into account. We formulate a set partitioning model for this problem, subject to predefined trip schedule and limited charging facilities. A tailored branch-and-price approach is then proposed to find the global optimal solution. In particular, we develop an effective multi-label correcting method to deal with the pricing problem (i.e., generating columns) in column generation procedure within the branch-and-price framework, coupled with a dual stabilization technique with an aim to accelerate the convergence rate. Meanwhile, a branch-and-bound solution approach is adopted to guarantee optimal integer solutions. Numerical experiments and a case study arising from real transit network are conducted to further assess the efficiency and applicability of the proposed method. Our experiments confirm that, despite the complexity of the considered problem, optimal solution can still be generated within reasonable computational time using the proposed algorithm. The results also show considerable cost saving (about 10.1–27.3% less) if this optimization model is implemented, mainly contributed by the substantial extension of battery life. A number of managerial insights stemmed from the numerical case study are outlined, which can help transit operators formulate more cost-efficient electric bus fleet scheduling plans.

Suggested Citation

  • Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:transe:v:154:y:2021:i:c:s136655452100209x
    DOI: 10.1016/j.tre.2021.102445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452100209X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    2. Zhang, Yongzhi & Xiong, Rui & He, Hongwen & Qu, Xiaobo & Pecht, Michael, 2019. "State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction," Applied Energy, Elsevier, vol. 255(C).
    3. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    4. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    5. Martin Desrochers & François Soumis, 1989. "A Column Generation Approach to the Urban Transit Crew Scheduling Problem," Transportation Science, INFORMS, vol. 23(1), pages 1-13, February.
    6. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    7. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    8. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    10. Schoch, Jennifer & Gaerttner, Johannes & Schuller, Alexander & Setzer, Thomas, 2018. "Enhancing electric vehicle sustainability through battery life optimal charging," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 1-18.
    11. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    12. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    13. Lebeau, Philippe & Macharis, Cathy & Van Mierlo, Joeri, 2016. "Exploring the choice of battery electric vehicles in city logistics: A conjoint-based choice analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 245-258.
    14. Hof, Julian & Schneider, Michael & Goeke, Dominik, 2017. "Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 102-112.
    15. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    16. Adler, Jonathan D. & Mirchandani, Pitu B., 2014. "Online routing and battery reservations for electric vehicles with swappable batteries," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 285-302.
    17. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    18. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    19. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    2. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    3. Jing Wang & Heqi Wang & Chunguang Wang, 2023. "Optimal Charging Pile Configuration and Charging Scheduling for Electric Bus Routes Considering the Impact of Ambient Temperature on Charging Power," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    4. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    5. Yan Xing & Quanbo Fu & Yachao Li & Hanshuo Chu & Enyi Niu, 2023. "Optimal Model of Electric Bus Scheduling Based on Energy Consumption and Battery Loss," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    6. Cui, Weiwei & Yang, Yiran & Di, Lei, 2023. "Modeling and optimization for static-dynamic routing of a vehicle with additive manufacturing equipment," International Journal of Production Economics, Elsevier, vol. 257(C).
    7. Guo, Fang & Zhang, Jingjing & Huang, Zhihong & Huang, Weilai, 2022. "Simultaneous charging station location-routing problem for electric vehicles: Effect of nonlinear partial charging and battery degradation," Energy, Elsevier, vol. 250(C).
    8. Battaïa, Olga & Dolgui, Alexandre & Guschinsky, Nikolai & Kovalyov, Mikhail Y., 2023. "Designing fast-charge urban electric bus services: An Integer Linear Programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    9. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
    10. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    11. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    12. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    13. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    14. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    15. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    16. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    17. Jing Wang & Heqi Wang & Ande Chang & Chen Song, 2022. "Collaborative Optimization of Vehicle and Crew Scheduling for a Mixed Fleet with Electric and Conventional Buses," Sustainability, MDPI, vol. 14(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Li, Lu & Lo, Hong K. & Huang, Wei & Xiao, Feng, 2021. "Mixed bus fleet location-routing-scheduling under range uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 155-179.
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    4. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    5. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    6. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    8. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    9. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    10. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    12. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    13. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2018. "Charge scheduling for electric freight vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 246-269.
    14. Sina Rastani & Bülent Çatay, 2023. "A large neighborhood search-based matheuristic for the load-dependent electric vehicle routing problem with time windows," Annals of Operations Research, Springer, vol. 324(1), pages 761-793, May.
    15. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    16. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    17. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    18. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    19. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    20. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "The electric on-demand bus routing problem with partial charging and nonlinear functions," Working Papers 2022005, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:154:y:2021:i:c:s136655452100209x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.