IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p770-d491245.html
   My bibliography  Save this article

The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway

Author

Listed:
  • Kristoffer W. Lie

    (Department of Energy and Process Engineering & ENERSENSE, Norges Teknisk-Naturvitenskapelige Universitet, 7491 Trondheim, Norway)

  • Trym A. Synnevåg

    (Department of Energy and Process Engineering & ENERSENSE, Norges Teknisk-Naturvitenskapelige Universitet, 7491 Trondheim, Norway)

  • Jacob J. Lamb

    (Department of Energy and Process Engineering & ENERSENSE, Norges Teknisk-Naturvitenskapelige Universitet, 7491 Trondheim, Norway
    Department of Electronic Systems & ENERSENSE, Norges Teknisk-Naturvitenskapelige Universitet, 7034 Trondheim, Norway)

  • Kristian M. Lien

    (Department of Energy and Process Engineering & ENERSENSE, Norges Teknisk-Naturvitenskapelige Universitet, 7491 Trondheim, Norway)

Abstract

In August 2019, a new bus fleet of 36 electric and 58 hybrid buses were implemented in Trondheim, Norway. This paper examines the carbon footprint of electrified city buses, by addressing the achieved and potential reduction for the new bus fleet. Important aspects such as geographical location of production, charging electricity mix, and impact from production and operation on lifetime emissions, are also examined. A meta-analysis on life cycle assessment studies was undertaken to investigate greenhouse gas emissions and energy demand in different parts of bus production. This is followed by the production of a bus model using the findings and comparing electrified buses with diesel and HVO buses. The models were then used in a case study of the bus fleet in Trondheim, to understand the specific parameters affecting the carbon footprint. The results show that the overall carbon footprint has been considerably reduced (37%) by implementing biofuel and electrified buses, and that a further reduction of 52% can be achieved through full electrification. The operation emissions for the fleet were found to be 49 g CO 2 -eq/person-km, which is lower than the average city bus and passenger car in Norway.

Suggested Citation

  • Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:770-:d:491245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    3. Pietro A. Renzulli & Bruno Notarnicola & Giuseppe Tassielli & Gabriella Arcese & Rosa Di Capua, 2016. "Life Cycle Assessment of Steel Produced in an Italian Integrated Steel Mill," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    4. Greg Cooney & Troy R. Hawkins & Joe Marriott, 2013. "Life Cycle Assessment of Diesel and Electric Public Transportation Buses," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 689-699, October.
    5. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    6. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2021. "The puzzle of greenhouse gas footprints of oil abundance," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    7. Chester, Mikhail V, 2008. "Life-cycle Environmental Inventory of Passenger Transportation in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n29n303, Institute of Transportation Studies, UC Berkeley.
    8. Han Hao & Zhexuan Mu & Shuhua Jiang & Zongwei Liu & Fuquan Zhao, 2017. "GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    9. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    10. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    11. Chester, Mikhail & Horvath, Arpad, 2009. "Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6z37f2jr, Institute of Transportation Studies, UC Berkeley.
    12. Weimer, Lucas & Braun, Tobias & Hemdt, Ansgar vom, 2019. "Design of a systematic value chain for lithium-ion batteries from the raw material perspective," Resources Policy, Elsevier, vol. 64(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    2. Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
    3. Aleksander Chudy & Piotr Hołyszko & Paweł Mazurek, 2022. "Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements," Energies, MDPI, vol. 15(15), pages 1-16, July.
    4. Le Quyen Luu & Eleonora Riva Sanseverino & Maurizio Cellura & Hoai-Nam Nguyen & Hoai-Phuong Tran & Hong Anh Nguyen, 2022. "Life Cycle Energy Consumption and Air Emissions Comparison of Alternative and Conventional Bus Fleets in Vietnam," Energies, MDPI, vol. 15(19), pages 1-15, September.
    5. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    2. Jie Yang & Fu Gu & Jianfeng Guo & Bin Chen, 2019. "Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    3. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Silje Nornes Bryntesen & Anders Hammer Strømman & Ignat Tolstorebrov & Paul R. Shearing & Jacob J. Lamb & Odne Stokke Burheim, 2021. "Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review," Energies, MDPI, vol. 14(5), pages 1-41, March.
    5. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    6. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    8. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    9. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2023. "Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Muhammad Asyraf Azni & Rasyikah Md Khalid, 2021. "Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    11. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    13. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Christian Spreafico & Davide Russo, 2020. "Exploiting the Scientific Literature for Performing Life Cycle Assessment about Transportation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    15. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    16. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    17. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Shuo Sun & Linwei Ma & Zheng Li, 2021. "Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    20. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:770-:d:491245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.