IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524004757.html
   My bibliography  Save this article

A real-time prediction framework for energy consumption of electric buses using integrated Machine learning algorithms

Author

Listed:
  • Dong, Changyin
  • Xiong, Zhuozhi
  • Li, Ni
  • Yu, Xinlian
  • Liang, Mingzhang
  • Zhang, Chu
  • Li, Ye
  • Wang, Hao

Abstract

An accurate prediction of energy consumption in electric buses (EBs) can effectively reduce driving range anxiety and facilitate bus scheduling. Existing studies have not provided real-time predictions based on distance traveled using integrated machine learning methods. This study proposes a framework for predicting EB energy consumption, which is primarily divided into energy consumption estimation, kinematic feature prediction, and energy consumption prediction. The framework begins by fusing high-resolution real-world EB data with weather and road information, from which five types of influencing factors are extracted for different driving distances. An eXtreme Gradient Boosting (XGBoost) model is developed to evaluate feature importance and estimate the energy consumption rate (ECR). The SHapley Additive explanation (SHAP) method is then used to analyze the factors affecting the ECR. To predict important kinematic characteristics, spatial and temporal characteristics are captured using Long Short-Term Memory (LSTM) and a fully connected neural network. Finally, the predicted kinematic characteristics and the XGBoost model are combined to enable real-time prediction of the ECR. The results indicate that estimation and prediction accuracies gradually improve with increased driving distance. The mean absolute error of average ECR decreases from 43.9 % for 100 m to 7.5 % for 16 km. Temperature, bus stop density, and peak periods emerge as the most significant external factors after 8 km. This framework shows an improvement of over 10 % in most scenarios compared with other models in the literature, enabling individual forecasts of energy consumption currently in transit and aiding in the calculation of remaining battery-supported distance.

Suggested Citation

  • Dong, Changyin & Xiong, Zhuozhi & Li, Ni & Yu, Xinlian & Liang, Mingzhang & Zhang, Chu & Li, Ye & Wang, Hao, 2025. "A real-time prediction framework for energy consumption of electric buses using integrated Machine learning algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004757
    DOI: 10.1016/j.tre.2024.103884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang DONG & Gaoyi MIAO & Weigang WEN, 2021. "China’s Carbon Neutrality Policy: Objectives, Impacts and Paths," East Asian Policy (EAP), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 5-18, January.
    2. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    3. Cedric De Cauwer & Wouter Verbeke & Thierry Coosemans & Saphir Faid & Joeri Van Mierlo, 2017. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Irfan Ullah & Kai Liu & Toshiyuki Yamamoto & Rabia Emhamed Al Mamlook & Arshad Jamal, 2022. "A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability," Energy & Environment, , vol. 33(8), pages 1583-1612, December.
    5. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    6. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    7. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    8. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    9. Feng Mao & Zhiheng Li & Kai Zhang, 2021. "A Comparison of Carbon Dioxide Emissions between Battery Electric Buses and Conventional Diesel Buses," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    10. Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
    11. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    12. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    13. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    14. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    15. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    16. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    17. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    18. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    19. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Changyin & Xiong, Zhuozhi & Zhang, Chu & Li, Ni & Li, Ye & Xie, Ning & Zhang, Jiarui & Wang, Hao, 2025. "A transformer-based approach for deep feature extraction and energy consumption prediction of electric buses based on driving distances," Applied Energy, Elsevier, vol. 380(C).
    2. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    3. Zhang, Zhaosheng & Wang, Shuai & Ye, Baolin & Ma, Yucheng, 2025. "A feature prediction-based method for energy consumption prediction of electric buses," Energy, Elsevier, vol. 314(C).
    4. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    5. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    6. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    7. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    8. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    9. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    10. Basso, Franco & Feijoo, Felipe & Pezoa, Raúl & Varas, Mauricio & Vidal, Brian, 2024. "The impact of electromobility in public transport: An estimation of energy consumption using disaggregated data in Santiago, Chile," Energy, Elsevier, vol. 286(C).
    11. Jiang, Yu & Guo, Jianhua & Zhao, Di & Li, Yue, 2024. "Intelligent energy consumption prediction for battery electric vehicles: A hybrid approach integrating driving behavior and environmental factors," Energy, Elsevier, vol. 308(C).
    12. Zhao, Li & Ke, Hanchen & Huo, Weiwei, 2023. "A frequency item mining based energy consumption prediction method for electric bus," Energy, Elsevier, vol. 263(PD).
    13. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    14. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    15. McCluskey, Jac & Druitt, Tom & Larkin, Charles, 2025. "Sustainability in transit: Assessing the economic case for electric bus adoption in the UK," Transport Policy, Elsevier, vol. 162(C), pages 493-508.
    16. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    17. Li, Qianwen & Leng, Yunhan & Yao, Handong & Pei, Mingyang, 2024. "Assessment of transit bus electricity consumption using a random parameters approach," Energy, Elsevier, vol. 307(C).
    18. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    19. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    20. Hubert Maximilian Sistig & Philipp Sinhuber & Matthias Rogge & Dirk Uwe Sauer, 2024. "Optimizing Fleet Structure for Autonomous Electric Buses: A Route-Based Analysis in Aachen, Germany," Sustainability, MDPI, vol. 16(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.