IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp118-141.html
   My bibliography  Save this article

Compression ignition engine performance modelling using hybrid MCDM techniques for the selection of optimum fish oil biodiesel blend at different injection timings

Author

Listed:
  • Sivaraja, C.M.
  • Sakthivel, G.

Abstract

The increasing demand on energy due to population growth and rise of living standards has led to considerable use of fossil fuels which cause environmental pollution and depletion of fossil fuels. Biodiesel proves to be a good alternative for fossil fuels. But sustainability of biodiesel is the key factor for determining it as a fuel in diesel engines. It needs identification of proper blend of biodiesel and diesel to meet the efficiency, engine suitability and environmental acceptability. Alternative fuel blend evaluation in IC engine fuel technologies is a very important strategic decision tool involving balancing between a number of criteria such as performance, emission and combustion parameters and opinions from different decision maker of IC engine experts. Hence, it is a MCDM problem. This paper describes the application of hybrid Multi Criteria Decision Making (MCDM) techniques for the selection of optimum biodiesel blend in IC engine. FAHP-TOPSIS, FAHP-VIKOR and FAHP-ELECTRE, are the three methods that are used to evaluate the best blend. The performances of these MCDM methods are also compared with each other. Here, FAHP is used to determine the relative weights of the criteria, whereas TOPSIS, VIKOR and ELECTRE are used for obtaining the final ranking of alternatives. A single cylinder, constant speed and direct injection diesel engine with a rated output of 4.4 kW is used for exploratory analysis of evaluation criteria at different load conditions. Diesel, B20, B40, B60, B80 and B100 fuel blends are prepared by varying the proportion of biodiesel. Similarly, Brake thermal efficiency (BTE), Exhaust gas temperature (EGT), Oxides of Nitrogen (NOx), Smoke, Hydrocarbon (HC), Carbon monoxide (CO), Carbon dioxide (CO2), Ignition Delay, Combustion Duration and Maximum Rate of Pressure Rise are considered as the evaluation criteria. The ranking of alternatives obtained by FAHP-TOPSIS, FAHP-VIKOR and FAHP-ELECTRE are B20 > Diesel > B40 > B60 > B80 > B100 for 21°bTDC and 24°bTDC and Diesel > B20 > B40 > B60 > B80 > B100 for 27°bTDC. It shows that B20 is ranked first for 21°bTDC and 24°bTDC and second for 27°bTDC injection timing. Hence, it is concluded that mixing 20% biodiesel with diesel is suggested as a good replacement for diesel. This paper provides a new insight of applying MCDM techniques to evaluate the best fuel blend by decision makers such as engine manufactures and R&D engineers to meet the fuel economy and emission norms to empower green revolution.

Suggested Citation

  • Sivaraja, C.M. & Sakthivel, G., 2017. "Compression ignition engine performance modelling using hybrid MCDM techniques for the selection of optimum fish oil biodiesel blend at different injection timings," Energy, Elsevier, vol. 139(C), pages 118-141.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:118-141
    DOI: 10.1016/j.energy.2017.07.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    2. Perimenis, Anastasios & Walimwipi, Hartley & Zinoviev, Sergey & Müller-Langer, Franziska & Miertus, Stanislav, 2011. "Development of a decision support tool for the assessment of biofuels," Energy Policy, Elsevier, vol. 39(3), pages 1782-1793, March.
    3. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    4. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    5. G. Sakthivel & M. Ilangkumaran & G. Nagarajan & A. Raja & P.M. Ragunadhan & J. Prakash, 2013. "A hybrid MCDM approach for evaluating an automobile purchase model," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 5(1), pages 50-85.
    6. M. Ilangkumaran & S. Kumanan, 2012. "Application of Hybrid VIKOR Model in Selection of Maintenance Strategy," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 5(2), pages 59-81, April.
    7. Huang, Chi-Cheng & Chu, Pin-Yu & Chiang, Yu-Hsiu, 2008. "A fuzzy AHP application in government-sponsored R&D project selection," Omega, Elsevier, vol. 36(6), pages 1038-1052, December.
    8. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    9. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    10. Tsung-Yu Chou & Gin-Shuh Liang, 2001. "Application of a fuzzy multi-criteria decision-making model for shipping company performance evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 28(4), pages 375-392, October.
    11. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    12. Yedla, Sudhakar & Shrestha, Ram M., 2003. "Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 717-729, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayanamoorthy, Samayan & Ramya, L. & Kalaiselvan, Samayan & Kureethara, Joseph Varghese & Kang, Daekook, 2021. "Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    2. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    3. Manik Chandra Das & Abanish Pandey & Arun Kumar Mahato & Rajnish Kumar Singh, 2019. "Comparative performance of electric vehicles using evaluation of mixed data," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 1067-1090, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, G. & Sivaraja, C.M. & Ikua, Bernard W., 2019. "Prediction OF CI engine performance, emission and combustion parameters using fish oil as a biodiesel by fuzzy-GA," Energy, Elsevier, vol. 166(C), pages 287-306.
    2. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    3. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    4. Martin Kügemann & Heracles Polatidis, 2019. "Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles: A Systematic Review and Classification of the Literature," Energies, MDPI, vol. 13(1), pages 1-21, December.
    5. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    6. Hasan Dinçer & Ozlem Olgu Akdeniz & Umit Hacioglu, 2018. "Competitive strategy selection in the European banking sector using a hybrid decision-making approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(1), pages 213-242.
    7. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    8. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
    9. Sakthivel, G. & Sivakumar, R. & Saravanan, N. & Ikua, Bernard W., 2017. "A decision support system to evaluate the optimum fuel blend in an IC engine to enhance the energy efficiency and energy management," Energy, Elsevier, vol. 140(P1), pages 566-583.
    10. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    11. Wu, Hung-Yi & Lin, Yi-Kuei & Chang, Chi-Hsiang, 2011. "Performance evaluation of extension education centers in universities based on the balanced scorecard," Evaluation and Program Planning, Elsevier, vol. 34(1), pages 37-50, February.
    12. Nassereddine, M. & Eskandari, H., 2017. "An integrated MCDM approach to evaluate public transportation systems in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 427-439.
    13. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    14. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    15. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    16. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    17. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    18. Al-Alawi, Baha M. & Coker, Alexander D., 2018. "Multi-criteria decision support system with negotiation process for vehicle technology selection," Energy, Elsevier, vol. 157(C), pages 278-296.
    19. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    20. Büyüközkan, Gülçin & Ruan, Da, 2008. "Evaluation of software development projects using a fuzzy multi-criteria decision approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 464-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:118-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.