IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03193652.html
   My bibliography  Save this paper

Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis

Author

Listed:
  • Gino Baudry
  • Cathy Macharis
  • Thomas Vallée

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

Abstract

The present study aims to address the following question: compared with first and second-generation biofuels, can microalgae biodiesel contribute to addressing the sustainability objectives in the transport sector in France? To this end, we deployed the range based Multi-Actor Multi-Criteria Analysis (range-based MAMCA) methodology that explicitly considers the different and occasionally conflicting values of the stakeholders (feedstock producers, biofuel producers, refining industry, fuel distributors, end-users, car manufacturers, government, and NGOs). By means of a Monte Carlo simulation, the method also provides an exploratory scenario approach that enables considering uncertainty concerning the context evolution and the biofuel impacts by 2030. In our case study, we aimed at fostering co-construction with stakeholders into the decision-making process by involving them starting from the very beginning of the procedure. Assuming a “weak sustainability” (i.e. the substitutability between human and environmental capital) our results suggest that microalgae biodiesel can contribute to the achievement of the sustainability objectives in the transport sector. Preliminary policy measures are finally suggested to speeding up the deployment of microalgae biodiesel in France. At the overall level, our study provides new insights about the capacity of first, second and third generation biofuels in fulfilling the sustainability criteria of the different stakeholders.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gino Baudry & Cathy Macharis & Thomas Vallée, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Post-Print hal-03193652, HAL.
  • Handle: RePEc:hal:journl:hal-03193652
    DOI: 10.1016/j.energy.2018.05.038
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rennings, Klaus & Wiggering, Hubert, 1997. "Steps towards indicators of sustainable development: Linking economic and ecological concepts," Ecological Economics, Elsevier, vol. 20(1), pages 25-36, January.
    2. Philippe Vincke, 1994. "Recent progresses in Multicriteria Decision-Aid," ULB Institutional Repository 2013/165499, ULB -- Universite Libre de Bruxelles.
    3. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Range-based Multi-Actor Multi-Criteria Analysis: A combined method of Multi-Actor Multi-Criteria Analysis and Monte Carlo simulation to support participatory decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 264(1), pages 257-269.
    4. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    5. Ribeiro, Lauro A. & da Silva, Patrícia Pereira & Mata, Teresa M. & Martins, António A., 2015. "Prospects of using microalgae for biofuels production: Results of a Delphi study," Renewable Energy, Elsevier, vol. 75(C), pages 799-804.
    6. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    7. van Dam, J. & Junginger, M., 2011. "Striving to further harmonization of sustainability criteria for bioenergy in Europe: Recommendations from a stakeholder questionnaire," Energy Policy, Elsevier, vol. 39(7), pages 4051-4066, July.
    8. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    9. Matzen, Michael & Alhajji, Mahdi & Demirel, Yaşar, 2015. "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Elsevier, vol. 93(P1), pages 343-353.
    10. Cuppen, Eefje & Breukers, Sylvia & Hisschemöller, Matthijs & Bergsma, Emmy, 2010. "Q methodology to select participants for a stakeholder dialogue on energy options from biomass in the Netherlands," Ecological Economics, Elsevier, vol. 69(3), pages 579-591, January.
    11. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    12. Dinh Sy Khang & Michael Angelo B. Promentilla & Raymond R. Tan & Naoya Abe & Phan Dinh Tuan & Luis F. Razon, 2016. "Multi-criteria approach to assess stakeholders preferences for selection of biodiesel feedstock in Vietnam," International Journal of Business and Systems Research, Inderscience Enterprises Ltd, vol. 10(2/3/4), pages 306-331.
    13. Subhadra, Bobban G. & Edwards, Mark, 2011. "Coproduct market analysis and water footprint of simulated commercial algal biorefineries," Applied Energy, Elsevier, vol. 88(10), pages 3515-3523.
    14. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    15. Gnansounou, Edgard, 2011. "Assessing the sustainability of biofuels: A logic-based model," Energy, Elsevier, vol. 36(4), pages 2089-2096.
    16. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    17. Turcksin, Laurence & Macharis, Cathy & Lebeau, Kenneth & Boureima, Faycal & Van Mierlo, Joeri & Bram, Svend & De Ruyck, Jacques & Mertens, Lara & Jossart, Jean-Marc & Gorissen, Leen & Pelkmans, Luc, 2011. "A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium," Energy Policy, Elsevier, vol. 39(1), pages 200-214, January.
    18. Philippe Vincke, 1994. "Recent progresses in Multicriteria Decision-Aid," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 17(2), pages 21-32, September.
    19. J. P. Brans & Ph. Vincke, 1985. "Note---A Preference Ranking Organisation Method," Management Science, INFORMS, vol. 31(6), pages 647-656, June.
    20. Markevicius, A. & Katinas, V. & Perednis, E. & Tamasauskiene, M., 2010. "Trends and sustainability criteria of the production and use of liquid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3226-3231, December.
    21. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, October.
    22. De Brucker, Klaas & Macharis, Cathy & Verbeke, Alain, 2013. "Multi-criteria analysis and the resolution of sustainable development dilemmas: A stakeholder management approach," European Journal of Operational Research, Elsevier, vol. 224(1), pages 122-131.
    23. Collet, Pierre & Lardon, Laurent & Hélias, Arnaud & Bricout, Stéphanie & Lombaert-Valot, Isabelle & Perrier, Béatrice & Lépine, Olivier & Steyer, Jean-Philippe & Bernard, Olivier, 2014. "Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements," Renewable Energy, Elsevier, vol. 71(C), pages 525-533.
    24. Kathrin Sunde & Andreas Brekke & Birger Solberg, 2011. "Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review," Energies, MDPI, vol. 4(6), pages 1-33, May.
    25. Gallego Carrera, Diana & Mack, Alexander, 2010. "Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts," Energy Policy, Elsevier, vol. 38(2), pages 1030-1039, February.
    26. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    27. Munda, Giuseppe, 2004. "Social multi-criteria evaluation: Methodological foundations and operational consequences," European Journal of Operational Research, Elsevier, vol. 158(3), pages 662-677, November.
    28. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    29. Robert T. Eckenrode, 1965. "Weighting Multiple Criteria," Management Science, INFORMS, vol. 12(3), pages 180-192, November.
    30. Bomb, Christian & McCormick, Kes & Deurwaarder, Ewout & Kaberger, Tomas, 2007. "Biofuels for transport in Europe: Lessons from Germany and the UK," Energy Policy, Elsevier, vol. 35(4), pages 2256-2267, April.
    31. Ascough, J.C. & Maier, H.R. & Ravalico, J.K. & Strudley, M.W., 2008. "Future research challenges for incorporation of uncertainty in environmental and ecological decision-making," Ecological Modelling, Elsevier, vol. 219(3), pages 383-399.
    32. Bracco, Stefania, 2015. "Effectiveness of EU biofuels sustainability criteria in the context of land acquisitions in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 130-143.
    33. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    34. Razieh Mosadeghi & Jan Warnken & Rodger Tomlinson & Hamid Mirfenderesk, 2013. "Uncertainty analysis in the application of multi-criteria decision-making methods in Australian strategic environmental decisions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(8), pages 1097-1124, October.
    35. Sivaraja, C.M. & Sakthivel, G., 2017. "Compression ignition engine performance modelling using hybrid MCDM techniques for the selection of optimum fish oil biodiesel blend at different injection timings," Energy, Elsevier, vol. 139(C), pages 118-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    3. Yang, Zaoli & Ahmad, Salman & Bernardi, Andrea & Shang, Wen-long & Xuan, Jin & Xu, Bing, 2023. "Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework," Applied Energy, Elsevier, vol. 332(C).
    4. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "A new artificial neural networks algorithm to analyze the nexus among logistics performance, energy demand, and environmental degradation," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 315-328.
    5. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    6. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    7. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2020. "The relationship between air pollution and COVID-19-related deaths: An application to three French cities," Applied Energy, Elsevier, vol. 279(C).
    8. Qiu, Yi & Cheng, Jun & Guo, Hao & Zhang, Ze & Yang, Weijuan & Cen, Kefa, 2019. "Mild hydrothermal treatment on microalgal biomass in batch reactors for lipids hydrolysis and solvent-free extraction to produce biodiesel," Energy, Elsevier, vol. 189(C).
    9. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    2. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Range-based Multi-Actor Multi-Criteria Analysis: A combined method of Multi-Actor Multi-Criteria Analysis and Monte Carlo simulation to support participatory decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 264(1), pages 257-269.
    3. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Ziolkowska, Jadwiga R., 2014. "Optimizing biofuels production in an uncertain decision environment: Conventional vs. advanced technologies," Applied Energy, Elsevier, vol. 114(C), pages 366-376.
    5. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    6. Maria Rosaria Guarini & Fabrizio Battisti & Anthea Chiovitti, 2018. "A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes," Sustainability, MDPI, vol. 10(2), pages 1-28, February.
    7. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    8. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    9. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Parisa Rafiaani & Zoumpolia Dikopoulou & Miet Dael & Tom Kuppens & Hossein Azadi & Philippe Lebailly & Steven Passel, 2020. "Identifying Social Indicators for Sustainability Assessment of CCU Technologies: A Modified Multi-criteria Decision Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 15-44, January.
    11. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2020. "Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1339-1351.
    12. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    13. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    14. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    15. Höfer, Tim & von Nitzsch, Rüdiger & Madlener, Reinhard, 2019. "Using Value-Focused Thinking and Multi-Criteria Group Decision-Making to Evaluate Energy Transition Alternatives," FCN Working Papers 4/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    17. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    19. Marinakis, Vangelis & Doukas, Haris & Xidonas, Panos & Zopounidis, Constantin, 2017. "Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan," Omega, Elsevier, vol. 69(C), pages 1-16.
    20. te Boveldt, Geert & Van Raemdonck, Koen & Macharis, Cathy, 2018. "A new railway tunnel under Brussels? Assessing political feasibility and desirability with competence-based multi criteria analysis," Transport Policy, Elsevier, vol. 66(C), pages 30-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03193652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.