IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03193652.html

Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis

Author

Listed:
  • Gino Baudry

  • Cathy Macharis
  • Thomas Vallée

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

Abstract

The present study aims to address the following question: compared with first and second-generation biofuels, can microalgae biodiesel contribute to addressing the sustainability objectives in the transport sector in France? To this end, we deployed the range based Multi-Actor Multi-Criteria Analysis (range-based MAMCA) methodology that explicitly considers the different and occasionally conflicting values of the stakeholders (feedstock producers, biofuel producers, refining industry, fuel distributors, end-users, car manufacturers, government, and NGOs). By means of a Monte Carlo simulation, the method also provides an exploratory scenario approach that enables considering uncertainty concerning the context evolution and the biofuel impacts by 2030. In our case study, we aimed at fostering co-construction with stakeholders into the decision-making process by involving them starting from the very beginning of the procedure. Assuming a “weak sustainability” (i.e. the substitutability between human and environmental capital) our results suggest that microalgae biodiesel can contribute to the achievement of the sustainability objectives in the transport sector. Preliminary policy measures are finally suggested to speeding up the deployment of microalgae biodiesel in France. At the overall level, our study provides new insights about the capacity of first, second and third generation biofuels in fulfilling the sustainability criteria of the different stakeholders.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gino Baudry & Cathy Macharis & Thomas Vallée, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Post-Print hal-03193652, HAL.
  • Handle: RePEc:hal:journl:hal-03193652
    DOI: 10.1016/j.energy.2018.05.038
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    3. Yang, Zaoli & Ahmad, Salman & Bernardi, Andrea & Shang, Wen-long & Xuan, Jin & Xu, Bing, 2023. "Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework," Applied Energy, Elsevier, vol. 332(C).
    4. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "A new artificial neural networks algorithm to analyze the nexus among logistics performance, energy demand, and environmental degradation," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 315-328.
    5. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    6. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    7. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2020. "The relationship between air pollution and COVID-19-related deaths: An application to three French cities," Applied Energy, Elsevier, vol. 279(C).
    8. Qiu, Yi & Cheng, Jun & Guo, Hao & Zhang, Ze & Yang, Weijuan & Cen, Kefa, 2019. "Mild hydrothermal treatment on microalgal biomass in batch reactors for lipids hydrolysis and solvent-free extraction to produce biodiesel," Energy, Elsevier, vol. 189(C).
    9. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03193652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.