IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5941-d444903.html
   My bibliography  Save this article

Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel

Author

Listed:
  • Luqman Razzaq

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Shahid Imran

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Zahid Anwar

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Farooq

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Mujtaba Abbas

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Haris Mehmood Khan

    (Department of Chemical, Polymer and Composite Materials Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Tahir Asif

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Amjad

    (Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Manzoore Elahi M. Soudagar

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Nabeel Shaukat

    (Department of Chemical, Polymer and Composite Materials Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • I. M. Rizwanul Fattah

    (School of Information, Systems and Modelling, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • S. M. Ashrafur Rahman

    (Biofuel Engine Research Facility, Queensland University of Technology, Brisbane City, QLD 4000, Australia)

Abstract

In this study, waste cooking oil (WCO) was used as a feedstock for biodiesel production, where the pretreatment of WCO was performed using mineral acids to reduce the acid value. The response surface methodology (RSM) was used to create an interaction for different operating parameters that affect biodiesel yield. The optimised biodiesel yield was 93% at a reaction temperature of 57.50 °C, catalyst concentration 0.25 w/w , methanol to oil ratio 8.50:1, reaction stirring speed 600 rpm, and a reaction time of 3 h. Physicochemical properties, including lower heating value, density, viscosity, cloud point, and flash point of biodiesel blends, were determined using American Society for Testing and Materials (ASTM) standards. Biodiesel blends B10, B20, B30, B40, and B50 were tested on a compression ignition engine. Engine performance parameters, including brake torque (BT), brake power (BP), brake thermal efficiency (BTE), and brake specific fuel consumption (BSFC) were determined using biodiesel blends and compared to that of high-speed diesel. The average BT reduction for biodiesel blends compared to HSD at 3000 rpm were found to be 1.45%, 2%, 2.2%, 3.09%, and 3.5% for B10, B20, B30, B40, and B50, respectively. The average increase in BSFC for biodiesel blends compared to HSD at 3500 rpm were found to be 1.61%, 5.73%, 8.8%, 12.76%, and 18% for B10, B20, B30, B40, and B50, respectively.

Suggested Citation

  • Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5941-:d:444903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    2. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    4. Ahmad, Tanweer & Danish, Mohammed & Kale, Pradeep & Geremew, Belete & Adeloju, Samuel B. & Nizami, Maniruddin & Ayoub, Muhammad, 2019. "Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations," Renewable Energy, Elsevier, vol. 139(C), pages 1272-1280.
    5. Nirmala, N. & Dawn, S.S. & Harindra, C., 2020. "Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine," Renewable Energy, Elsevier, vol. 147(P1), pages 284-292.
    6. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    7. Nayak, Milap G. & Vyas, Amish P., 2019. "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology," Renewable Energy, Elsevier, vol. 138(C), pages 18-28.
    8. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Fattah, I.M. Rizwanul & Sanjid, A., 2014. "Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 379-395.
    9. Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
    10. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    11. Akcay, Mehmet & Yilmaz, Ilker Turgut & Feyzioglu, Ahmet, 2020. "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends," Energy, Elsevier, vol. 212(C).
    12. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    2. Luqman Razzaq & Muhammad Mujtaba Abbas & Sajjad Miran & Salman Asghar & Saad Nawaz & Manzoore Elahi M. Soudagar & Nabeel Shaukat & Ibham Veza & Shahid Khalil & Anas Abdelrahman & Muhammad A. Kalam, 2022. "Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    3. Evgeniy Ganev & Boyan Ivanov & Natasha Vaklieva-Bancheva & Elisaveta Kirilova & Yunzile Dzhelil, 2021. "A Multi-Objective Approach toward Optimal Design of Sustainable Integrated Biodiesel/Diesel Supply Chain Based on First- and Second-Generation Feedstock with Solid Waste Use," Energies, MDPI, vol. 14(8), pages 1-38, April.
    4. Keerthi Kumar N. & N. R. Banapurmath & T. K. Chandrashekar & Jatadhara G. S. & Manzoore Elahi M. Soudagar & Ali E. Anqi & M. A. Mujtaba & Marjan Goodarzi & Ashraf Elfasakhany & Md Irfanul Haque Siddiq, 2021. "Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Dariusz Kurczyński & Grzegorz Wcisło & Agnieszka Leśniak & Miłosław Kozak & Piotr Łagowski, 2022. "Production and Testing of Butyl and Methyl Esters as New Generation Biodiesels from Fatty Wastes of the Leather Industry," Energies, MDPI, vol. 15(22), pages 1-20, November.
    6. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    3. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    4. M. Anwar & M. G. Rasul & N. M. S. Hassan & M. I. Jahirul & Rezwanul Haque & M. M. Hasan & A. G. M. B. Mustayen & R. Karami & D. Schaller, 2022. "Stone Fruit Seed: A Source of Renewable Fuel for Transport," Energies, MDPI, vol. 15(13), pages 1-21, June.
    5. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    6. R. S. Gavhane & A. M. Kate & Manzoore Elahi M. Soudagar & V. D. Wakchaure & Sagar Balgude & I. M. Rizwanul Fattah & Nik-Nazri Nik-Ghazali & H. Fayaz & T. M. Yunus Khan & M. A. Mujtaba & Ravinder Kumar, 2021. "Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine," Energies, MDPI, vol. 14(5), pages 1-16, March.
    7. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    8. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    9. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    10. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    11. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Makasson R. Cland & Offong O. Aniekan & Muhammad A. Tahir & Ogbaka T. David, 2020. "Production of Biodiesel from Groundnut Crude Oil," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 133-136, August.
    13. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    14. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    15. Singh, Paramvir & Chauhan, S.R. & Goel, Varun, 2018. "Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends," Renewable Energy, Elsevier, vol. 125(C), pages 501-510.
    16. Aslan, Volkan & Eryilmaz, Tanzer, 2020. "Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH," Energy, Elsevier, vol. 209(C).
    17. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    18. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    19. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    20. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5941-:d:444903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.