IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4667-d847941.html
   My bibliography  Save this article

Stone Fruit Seed: A Source of Renewable Fuel for Transport

Author

Listed:
  • M. Anwar

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)

  • M. G. Rasul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)

  • N. M. S. Hassan

    (School of Engineering and Technology, Central Queensland University, Cairns, QLD 4870, Australia)

  • M. I. Jahirul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)

  • Rezwanul Haque

    (School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia)

  • M. M. Hasan

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)

  • A. G. M. B. Mustayen

    (School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia)

  • R. Karami

    (Oil and Gas Research Center (OGRC), Persian Gulf University, Bushehr 7516913817, Iran)

  • D. Schaller

    (Southern Oil Refineries, Gladstone, QLD 4694, Australia)

Abstract

This study investigated the suitability of stone fruit seed as a source of biodiesel for transport. Stone fruit oil (SFO) was extracted from the seed and converted into biodiesel. The biodiesel yield of 95.75% was produced using the alkaline catalysed transesterification process with a methanol-to-oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt% (weight %), and a reaction temperature of 55 °C for 60 min. The physicochemical properties of the produced biodiesel were determined and found to be the closest match of standard diesel. The engine performance, emissions and combustion behaviour of a four-cylinder diesel engine fuelled with SFO biodiesel blends of 5%, 10% and 20% with diesel, v / v basis, were tested. The testing was performed at 100% engine load with speed ranging from 200 to 2400 rpm. The average brake specific fuel consumption and brake thermal efficiency of SFO blends were found to be 4.7% to 15.4% higher and 3.9% to 11.4% lower than those of diesel, respectively. The results also revealed that SFO biodiesel blends have marginally lower in-cylinder pressure and a higher heat release rate compared to diesel. The mass fraction burned results of SFO biodiesel blends were found to be slightly faster than those of diesel. The SFO biodiesel 5% blend produced about 1.9% higher NO x emissions and 17.4% lower unburnt HC with 23.4% lower particulate matter (PM) compared to diesel fuel. To summarise, SFO biodiesel blends are recommended as a suitable transport fuel for addressing engine emissions problems and improving combustion performance with a marginal sacrifice of engine efficiency.

Suggested Citation

  • M. Anwar & M. G. Rasul & N. M. S. Hassan & M. I. Jahirul & Rezwanul Haque & M. M. Hasan & A. G. M. B. Mustayen & R. Karami & D. Schaller, 2022. "Stone Fruit Seed: A Source of Renewable Fuel for Transport," Energies, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4667-:d:847941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    2. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath, 2018. "A Systematic Multivariate Analysis of Carica papaya Biodiesel Blends and Their Interactive Effect on Performance," Energies, MDPI, vol. 11(11), pages 1-20, October.
    3. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    4. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    5. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    6. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    7. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    8. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    9. Nabi, M.N. & Rasul, M.G. & Anwar, M. & Mullins, B.J., 2019. "Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels," Renewable Energy, Elsevier, vol. 140(C), pages 647-657.
    10. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    11. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    12. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    13. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    14. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    15. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    16. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    17. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    18. Mohammad I. Jahirul & Wenyong Koh & Richard J. Brown & Wijitha Senadeera & Ian O'Hara & Lalehvash Moghaddam, 2014. "Biodiesel Production from Non-Edible Beauty Leaf ( Calophyllum inophyllum ) Oil: Process Optimization Using Response Surface Methodology (RSM)," Energies, MDPI, vol. 7(8), pages 1-15, August.
    19. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    20. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    21. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    22. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.
    4. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    5. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    6. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    7. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    8. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    9. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    10. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    11. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    12. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    13. Jamshaid, M. & Masjuki, H.H. & Kalam, M.A. & Zulkifli, N.W.M. & Arslan, A. & Qureshi, A.A., 2022. "Experimental investigation of performance, emissions and tribological characteristics of B20 blend from cottonseed and palm oil biodiesels," Energy, Elsevier, vol. 239(PA).
    14. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir, 2016. "Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel," Renewable Energy, Elsevier, vol. 95(C), pages 233-247.
    15. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    16. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    17. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    18. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    20. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4667-:d:847941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.