IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6130-d818287.html
   My bibliography  Save this article

Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil

Author

Listed:
  • Luqman Razzaq

    (Department of Mechanical Engineering, University of Gujrat, Gujrat 50700, Pakistan)

  • Muhammad Mujtaba Abbas

    (Department of Mechanical, Mechatronics and Manufacturing Engineering (New Campus), University of Engineering and Technology (UET), Lahore 54000, Pakistan)

  • Sajjad Miran

    (Department of Mechanical Engineering, University of Gujrat, Gujrat 50700, Pakistan)

  • Salman Asghar

    (Department of Product and Industrial Design (PID), University of Engineering and Technology (UET), Lahore 54890, Pakistan)

  • Saad Nawaz

    (Department of Mechanical, Mechatronics and Manufacturing Engineering (New Campus), University of Engineering and Technology (UET), Lahore 54000, Pakistan)

  • Manzoore Elahi M. Soudagar

    (Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole 247121, Uttar Pradesh, India
    Department of Mechanical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India)

  • Nabeel Shaukat

    (Graduate School of Advance Sciences and Engineering, Hiroshima University, Hiroshima 739-8511, Japan)

  • Ibham Veza

    (Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia)

  • Shahid Khalil

    (Mechanical Engineering Technology, National Skills University, Islamabad 44000, Pakistan)

  • Anas Abdelrahman

    (Department of Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11845, Egypt)

  • Muhammad A. Kalam

    (Faculty of Engineering and IT, University of Technology, Sydney 2007, Australia)

Abstract

In this present study, cold flow properties of biodiesel produced from palm oil were improved by adding cotton seed oil into palm oil. Three different mixtures of palm and cotton oil were prepared as P50C50, P60C40, and P70C30. Among three oil mixtures, P60C40 was selected for biodiesel production via ultrasound assisted transesterification process. Physiochemical characteristics—including density, viscosity, calorific value, acid value, and oxidation stability—were measured and the free fatty acid composition was determined via GCMS. Response surface methodology (RSM) and artificial neural network (ANN) techniques were utilized for the sake of relation development among operating parameters (reaction time, methanol-to-oil ratio, and catalyst concentration) ultimately optimizing yield of palm–cotton oil sourced biodiesel. Maximum yield of P60C40 biodiesel estimated via RSM and ANN was 96.41% and 96.67% respectively, under operating parameters of reaction time (35 min), M:O molar ratio (47.5 v / v %), and catalyst concentration (1 wt %), but the actual biodiesel yield obtained experimentally was observed 96.32%. The quality of the RSM model was examined by analysis of variance (ANOVA). ANN model statistics exhibit contented values of mean square error (MSE) of 0.0001, mean absolute error (MAE) of 2.1374, and mean absolute deviation (MAD) of 2.5088. RSM and ANN models provided a coefficient of determination (R 2 ) of 0.9560 and a correlation coefficient (R) of 0.9777 respectively.

Suggested Citation

  • Luqman Razzaq & Muhammad Mujtaba Abbas & Sajjad Miran & Salman Asghar & Saad Nawaz & Manzoore Elahi M. Soudagar & Nabeel Shaukat & Ibham Veza & Shahid Khalil & Anas Abdelrahman & Muhammad A. Kalam, 2022. "Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6130-:d:818287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quayson, Emmanuel & Amoah, Jerome & Hama, Shinji & Kondo, Akihiko & Ogino, Chiaki, 2020. "Immobilized lipases for biodiesel production: Current and future greening opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Mujtaba, M.A. & Masjuki, H.H. & Kalam, M.A. & Ong, Hwai Chyuan & Gul, M. & Farooq, M. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Harith, M.H. & Yusoff, M.N.A.M., 2020. "Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine - Cuckoo search," Renewable Energy, Elsevier, vol. 158(C), pages 202-214.
    3. William Hickey, 2017. "Energy and Human Resource Development in Developing Countries," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-57082-6.
    4. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
    5. Yin, Xiulian & Ma, Haile & You, Qinghong & Wang, Zhenbin & Chang, Jinke, 2012. "Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil," Applied Energy, Elsevier, vol. 91(1), pages 320-325.
    6. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    7. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    8. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Impha Yalagudige Dharmegowda & Lakshmidevamma Madarakallu Muniyappa & Parameshwara Siddalingaiah & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Chander Prakash, 2022. "MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    2. Ratna Dewi Kusumaningtyas & Normaliza Normaliza & Elva Dianis Novia Anisa & Haniif Prasetiawan & Dhoni Hartanto & Harumi Veny & Fazlena Hamzah & Miradatul Najwa Muhd Rodhi, 2022. "Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis," Energies, MDPI, vol. 15(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keerthi Kumar N. & N. R. Banapurmath & T. K. Chandrashekar & Jatadhara G. S. & Manzoore Elahi M. Soudagar & Ali E. Anqi & M. A. Mujtaba & Marjan Goodarzi & Ashraf Elfasakhany & Md Irfanul Haque Siddiq, 2021. "Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    3. Mujtaba, M.A. & Kalam, M.A. & Masjuki, H.H. & Razzaq, Luqman & Khan, Haris Mehmood & Soudagar, Manzoore Elahi M. & Gul, M. & Ahmed, Waqar & Raju, V. Dhana & Kumar, Ravinder & Ong, Hwai Chyuan, 2021. "Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends," Renewable Energy, Elsevier, vol. 179(C), pages 1447-1457.
    4. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    5. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    6. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    7. Haseeb Yaqoob & Yew Heng Teoh & Muhammad Ahmad Jamil & Tahir Rasheed & Farooq Sher, 2020. "An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel," Sustainability, MDPI, vol. 12(23), pages 1-13, November.
    8. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    9. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    10. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    11. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    12. Hamed Pourzolfaghar & Faisal Abnisa & Wan Mohd Ashri Wan Daud & Mohamed Kheireddine Aroua & Teuku Meurah Indra Mahlia, 2020. "Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol," Energies, MDPI, vol. 13(11), pages 1-13, June.
    13. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    14. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    15. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    16. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    17. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    18. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    19. Rinaldi Idroes & Muhammad Yusuf & Saiful Saiful & Muksin Alatas & Subhan Subhan & Andi Lala & Muslem Muslem & Rivansyah Suhendra & Ghazi Mauer Idroes & Marwan Marwan & Teuku Meurah Indra Mahlia, 2019. "Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia," Energies, MDPI, vol. 12(23), pages 1-17, November.
    20. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6130-:d:818287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.