IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp628-644.html
   My bibliography  Save this article

Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis

Author

Listed:
  • Jagtap, Sharad P.
  • Pawar, Anand N.
  • Lahane, Subhash

Abstract

Utilization of biodiesel which is of renewable in nature was enhanced in single cylinder, 4-S diesel engine based on combustion, performance and emission analysis. Esterified jatropha biodiesel (EJO) at 4%, 10% and 20% was added in normal diesel by v/v ratios to form B04, B10 and B20 blends. The crown surfaces of piston, cylinder head and valves were coated with 250 μm thick mullite material (Metco 6150) to form low heat rejection engine (LHRE). The optimum EJO blend for the conventional engine (CE) as well as LHRE was investigated by comparing their characteristics from all biodiesel blends with the normal diesel of CE operation. B10 was obtained as an optimum blend for both engines. For CE at B10 operation, the CO, HC emissions (except NOx) and brake thermal efficiency (BTE) were reduced as compared with CE at diesel fuel. For LHRE operation, the emissions were further reduced but BTE was slightly reduced. Finally to improve the usability of biodiesel, 5% anhydrous ethanol was added into optimum blend to form E05B10 mixture. Ethanol required higher latent heat for evaporation; this caused reduction of NOx and improved BTE. Emission load on environment (GWP, RIP and TAP) was reduced by optimum blend operation.

Suggested Citation

  • Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:628-644
    DOI: 10.1016/j.renene.2020.03.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030447X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Öztürk, Uğur & Hazar, Hanbey & Arı, Yavuz Selim, 2019. "Investigation of using pumpkin seed oil methyl ester as a fuel in a boron coated diesel engine," Energy, Elsevier, vol. 186(C).
    2. Nirmala, N. & Dawn, S.S. & Harindra, C., 2020. "Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine," Renewable Energy, Elsevier, vol. 147(P1), pages 284-292.
    3. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    4. Prakash, T. & Geo, V. Edwin & Martin, Leenus Jesu & Nagalingam, B., 2018. "Effect of ternary blends of bio-ethanol, diesel and castor oil on performance, emission and combustion in a CI engine," Renewable Energy, Elsevier, vol. 122(C), pages 301-309.
    5. MohamedMusthafa, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Comparative studies on fly ash coated low heat rejection diesel engine on performance and emission characteristics fueled by rice bran and pongamia methyl ester and their blend with diesel," Energy, Elsevier, vol. 36(5), pages 2343-2351.
    6. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    7. Hazar, Hanbey & Sevinc, Huseyin, 2019. "Investigation of the effects of pre-heated linseed oil on performance and exhaust emission at a coated diesel engine," Renewable Energy, Elsevier, vol. 130(C), pages 961-967.
    8. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    9. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    10. Senthur Prabu, S. & Asokan, M.A. & Prathiba, S. & Ahmed, Shakkeel & Puthean, George, 2018. "Effect of additives on performance, combustion and emission behavior of preheated palm oil/diesel blends in DI diesel engine," Renewable Energy, Elsevier, vol. 122(C), pages 196-205.
    11. Portugal-Pereira, Joana & Nakatani, Jun & Kurisu, Kiyo & Hanaki, Keisuke, 2016. "Life cycle assessment of conventional and optimised Jatropha biodiesel fuels," Renewable Energy, Elsevier, vol. 86(C), pages 585-593.
    12. Krishna, M.V.S. Murali & Rao, V.V.R. Seshagiri & Reddy, T. Kishen Kumar & Murthy, P.V.K., 2014. "Comparative studies on performance evaluation of DI diesel engine with high grade low heat rejection combustion chamber with carbureted alcohols and crude jatropha oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 1-19.
    13. Taymaz, Imdat, 2006. "An experimental study of energy balance in low heat rejection diesel engine," Energy, Elsevier, vol. 31(2), pages 364-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    2. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    3. Munimathan Arunkumar & Vinayagam Mohanavel & Asif Afzal & Thanikodi Sathish & Manickam Ravichandran & Sher Afghan Khan & Nur Azam Abdullah & Muhammad Hanafi Bin Azami & Mohammad Asif, 2021. "A Study on Performance and Emission Characteristics of Diesel Engine Using Ricinus Communis (Castor Oil) Ethyl Esters," Energies, MDPI, vol. 14(14), pages 1-17, July.
    4. Hossain, Abul K. & Sharma, Vikas & Ahmad, Gulzar & Awotwe, Tabbi, 2023. "Energy outputs and emissions of biodiesels as a function of coolant temperature and composition," Renewable Energy, Elsevier, vol. 215(C).
    5. Viswanathan, Vinoth Kannan & Kaladgi, Abdul Razak & Thomai, Pushparaj & Ağbulut, Ümit & Alwetaishi, Mamdooh & Said, Zafar & Shaik, Saboor & Afzal, Asif, 2022. "Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends," Renewable Energy, Elsevier, vol. 198(C), pages 549-567.
    6. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    7. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    8. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Markov & Vyacheslav Kamaltdinov & Sergey Devyanin & Bowen Sa & Anatoly Zherdev & Viktor Furman, 2021. "Investigation of the Influence of Different Vegetable Oils as a Component of Blended Biofuel on Performance and Emission Characteristics of a Diesel Engine for Agricultural Machinery and Commercial Ve," Resources, MDPI, vol. 10(8), pages 1-23, July.
    2. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    3. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    4. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    5. Hazar, Hanbey & Telceken, Tugay & Sevinc, Huseyin, 2022. "An experimental study on emission of a diesel engine fuelled with SME (safflower methyl ester) and diesel fuel," Energy, Elsevier, vol. 241(C).
    6. Sathish, T. & Ağbulut, Ümit & Kumari, Vinod & Rathinasabapathi, G. & Karthikumar, K. & Rama Jyothi, N. & Ratna Kandavalli, Sumanth & Vijay Muni, T. & Saravanan, R., 2023. "Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles," Energy, Elsevier, vol. 284(C).
    7. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    8. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    10. Navaneetha Krishnan Balakrishnan & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Huu Tho Nguyen, 2023. "An Experimental Investigation on the Characteristics of a Compression Ignition Engine Fuelled by Diesel-Palm Biodiesel–Ethanol/Propanol Based Ternary Blends," Energies, MDPI, vol. 16(2), pages 1-18, January.
    11. Dwivedi, Gaurav & Sharma, M.P., 2014. "Prospects of biodiesel from Pongamia in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 114-122.
    12. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    13. Telli, Giovani Dambros & Altafini, Carlos Roberto & Rosa, Josimar Souza & Costa, Carlos Alberto, 2018. "Experimental investigation of a compression ignition engine operating on B7 direct injected and hydrous ethanol fumigation," Energy, Elsevier, vol. 165(PB), pages 106-117.
    14. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    15. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    16. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    17. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    18. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    19. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    20. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:628-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.