IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp1286-1292.html
   My bibliography  Save this article

Comparison of low temperature waste heat recovery methods

Author

Listed:
  • Varga, Zoltán
  • Palotai, Balázs

Abstract

Large amounts of heat is wasted through air coolers and water coolers for cooling low temperature (<150 °C) streams in many technologies. This paper summarizes the results of a study for partial substitute of air cooler, which cools down a hydrocarbon stream from 130 °C to 70 °C and dissipating heat of 12.1 MW into the environment, by applying organic Rankine cycle (ORC) and Kalina systems. Results showed that the heat energy (QH) recovered in the evaporator were 8.0–8.6 MW for ORC using i-pentane as working fluid and 8.2–8.3 MW for Kalina cycle, respectively. Efficiency (η) of selected systems obtained at the highest power generated (WT) was 10.0% (WT = 862 kW) for ORC and 10.57% (WT = 996 kW) for Kalina cycle within the design boundaries. Calculated carbon dioxide (CO2) emission reduction potential was 2260 t/y for ORC and 2600 t/y for Kalina system, respectively, at advantageous process conditions. Results showed that Kalina cycle provided higher efficiency and power generation ability on expense of higher system pressure (29 bar–7 bar). Economic calculations showed that the payback time is about 5.0 year for both systems.

Suggested Citation

  • Varga, Zoltán & Palotai, Balázs, 2017. "Comparison of low temperature waste heat recovery methods," Energy, Elsevier, vol. 137(C), pages 1286-1292.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1286-1292
    DOI: 10.1016/j.energy.2017.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
    2. Wang, Huarong & Xu, Jinliang & Yang, Xufei & Miao, Zheng & Yu, Chao, 2015. "Organic Rankine cycle saves energy and reduces gas emissions for cement production," Energy, Elsevier, vol. 86(C), pages 59-73.
    3. Kim, Kyoung Hoon & Ko, Hyung Jong & Kim, Kyoungjin, 2014. "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles," Applied Energy, Elsevier, vol. 113(C), pages 970-981.
    4. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    5. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    6. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    7. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    8. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    9. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Serge Nyallang Nyamsi & Mykhaylo Lototskyy & Ivan Tolj, 2020. "Optimal Design of Combined Two-Tank Latent and Metal Hydrides-Based Thermochemical Heat Storage Systems for High-Temperature Waste Heat Recovery," Energies, MDPI, vol. 13(16), pages 1-18, August.
    3. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    4. Somogyi, Viola & Sebestyén, Viktor & Domokos, Endre, 2018. "Assessment of wastewater heat potential for district heating in Hungary," Energy, Elsevier, vol. 163(C), pages 712-721.
    5. Tan, Zhimin & Feng, Xiao & Yang, Minbo & Wang, Yufei, 2022. "Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery," Energy, Elsevier, vol. 260(C).
    6. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    7. Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
    8. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    9. Wang, Jikang & Li, Yan & Yuan, Han & Zhang, Zhixiang & Ding, Zhuang & Mei, Ning, 2020. "The energy-saving study of water heater based on source-sink matching principle," Energy, Elsevier, vol. 205(C).
    10. Tan, Yong Zen & Han, Le & Chew, Nick Guan Pin & Chow, Wai Hoong & Wang, Rong & Chew, Jia Wei, 2018. "Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling," Applied Energy, Elsevier, vol. 231(C), pages 1079-1088.
    11. Kyoung Hoon Kim & Chul Ho Han & Hyung Jong Ko, 2018. "Comparative Thermodynamic Analysis of Kalina and Kalina Flash Cycles for Utilizing Low-Grade Heat Sources," Energies, MDPI, vol. 11(12), pages 1-14, November.
    12. Lin, Shan & Zhao, Li & Deng, Shuai & Ni, Jiaxin & Zhang, Ying & Ma, Minglu, 2019. "Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine," Energy, Elsevier, vol. 169(C), pages 958-971.
    13. Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
    14. Piotr Ziembicki & Joachim Kozioł & Jan Bernasiński & Ireneusz Nowogoński, 2019. "Innovative System for Heat Recovery and Combustion Gas Cleaning," Energies, MDPI, vol. 12(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    2. Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.
    3. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
    4. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    5. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    8. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    9. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    10. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    11. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    12. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    13. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    14. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    15. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    16. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    17. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    18. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    19. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    20. Palma-Flores, Oscar & Flores-Tlacuahuac, Antonio & Canseco-Melchorb, Graciela, 2016. "Simultaneous molecular and process design for waste heat recovery," Energy, Elsevier, vol. 99(C), pages 32-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1286-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.