IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315972.html
   My bibliography  Save this article

Thermodynamics, economy and environment analyses and optimization of series, parallel, dual-loop Kalina cycles for double-source heat recovery in cement industry

Author

Listed:
  • Yali Wang
  • Yongjun Xu
  • Yongliang Qiu
  • Shengwang Ning

Abstract

This research aims to investigate the heat recovery of both suspension preheater flue gas and clinker cooler hot air in cement industry. Three thermodynamic cycles including series Kalina Cycle (S-KC)、parallel Kalina Cycle (P-KC) and dual-loop Kalina Cycle (DL-KC) are introduced for converting dual-source heat resources into power to enhance the system efficiency for cement production process. Firstly, the multi-layer comprehensive evaluation models are established for the three thermodynamic cycles. Then, the parametric studies are implemented to estimate the influences of six key parameters on the system’s thermodynamic-economic-environmental performances. Meanwhile, optimization investigations consisting of thermodynamic optimal design (TOD), thermodynamic and economic optimal design (TEOD), and thermodynamic, economic and environmental optimal design (TEEOD) are considered, and the performances of systems and components are compared under three optimal design scenarios. The results prove that, for S-KC, P-KC and DL-KC, the higher net power output (Wnet) can be gained with decreasing condenser outlet temperature and regenerator temperature difference, and increasing evaporator temperature difference and superheat degree, the lower electricity production cost (EPC) can be acquired with decreasing condenser outlet temperature, evaporator temperature difference and regenerator temperature difference, while the less environment impact load (EIL) can be attained with decreasing condenser outlet temperature, regenerator temperature difference and basic ammonia concentration, and increasing superheat degree. In addition, under TOD, TEOD and TEEOD scenarios, DL-KC is the best selection from the thermodynamic, economic and environmental perspectives, with the corresponding Wnet of 7166 kW, 6904 kW and 6838 kW, the EPC of 0.00476 $/kWh, 0.00369 $/kWh and 0.00362$/kWh, the EIL of 0.0597 mPEChina,90/kWh, 0.0599 mPEChina,90/kW and 0.0593 mPEChina,90/kW. It also identifies that the evaporator unit is the key component contributing to exergy destruction and investment cost for three systems, while the pump has the maximum influence on environmental performance.

Suggested Citation

  • Yali Wang & Yongjun Xu & Yongliang Qiu & Shengwang Ning, 2025. "Thermodynamics, economy and environment analyses and optimization of series, parallel, dual-loop Kalina cycles for double-source heat recovery in cement industry," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-35, February.
  • Handle: RePEc:plo:pone00:0315972
    DOI: 10.1371/journal.pone.0315972
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315972
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315972&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).
    2. Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca & Marcel Tsimba Mboko & Lucien Mbozi Mbozi, 2023. "Thermodynamic Performance of a Cogeneration Plant Driven by Waste Heat from Cement Kilns Exhaust Gases," Energies, MDPI, vol. 16(5), pages 1-24, March.
    3. Özahi, Emrah & Tozlu, Alperen, 2020. "Optimization of an adapted Kalina cycle to an actual municipal solid waste power plant by using NSGA-II method," Renewable Energy, Elsevier, vol. 149(C), pages 1146-1156.
    4. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
    5. Chen, Heng & Wang, Yihan & An, Liuming & Xu, Gang & Zhu, Xin & Liu, Wenyi & Lei, Jing, 2022. "Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant," Energy, Elsevier, vol. 246(C).
    6. Salemi, Sina & Torabi, Morteza & Haghparast, Arash Kashani, 2022. "Technoeconomical investigation of energy harvesting from MIDREX® process waste heat using Kalina cycle in direct reduction iron process," Energy, Elsevier, vol. 239(PE).
    7. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    8. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    9. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    10. Mokarram, N. Hassani & Mosaffa, A.H., 2018. "A comparative study and optimization of enhanced integrated geothermal flash and Kalina cycles: A thermoeconomic assessment," Energy, Elsevier, vol. 162(C), pages 111-125.
    11. Meftahpour, Haleh & Saray, Rahim Khoshbakhti & Aghaei, Ali Tavakkol & Bahlouli, Keyvan, 2024. "Comprehensive analysis of energy, exergy, economic, and environmental aspects in implementing the Kalina cycle for waste heat recovery from a gas turbine cycle coupled with a steam generator," Energy, Elsevier, vol. 290(C).
    12. Wang, Huarong & Xu, Jinliang & Yang, Xufei & Miao, Zheng & Yu, Chao, 2015. "Organic Rankine cycle saves energy and reduces gas emissions for cement production," Energy, Elsevier, vol. 86(C), pages 59-73.
    13. Varga, Zoltán & Palotai, Balázs, 2017. "Comparison of low temperature waste heat recovery methods," Energy, Elsevier, vol. 137(C), pages 1286-1292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, Alibakhsh & Afshari, Fatemeh & Mahmoudkhani, Mahdi & Masoumi, Amirali & Esmaeili Bidhendi, Mehdi, 2025. "Waste heat recovery by thermodynamic cycles in cement plants: A review," Energy, Elsevier, vol. 314(C).
    2. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    3. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    4. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    5. Shiyang Teng & Yong-Qiang Feng & Tzu-Chen Hung & Huan Xi, 2021. "Multi-Objective Optimization and Fluid Selection of Different Cogeneration of Heat and Power Systems Based on Organic Rankine Cycle," Energies, MDPI, vol. 14(16), pages 1-22, August.
    6. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    7. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    8. Yari, Mortaza & Ariyanfar, Leyli & Aghdam, Ebrahim Abdi, 2018. "Analysis and performance assessment of a novel ORC based multi-generation system for power, distilled water and heat," Renewable Energy, Elsevier, vol. 119(C), pages 262-281.
    9. Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca & Marcel Tsimba Mboko & Lucien Mbozi Mbozi, 2023. "Thermodynamic Performance of a Cogeneration Plant Driven by Waste Heat from Cement Kilns Exhaust Gases," Energies, MDPI, vol. 16(5), pages 1-24, March.
    10. Yu, Zeting & Su, Ruizhi & Feng, Chunyu, 2020. "Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy," Energy, Elsevier, vol. 199(C).
    11. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Qi, Fengliang, 2016. "The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle," Applied Energy, Elsevier, vol. 167(C), pages 17-33.
    12. Chen, Heng & Wang, Yihan & An, Liuming & Xu, Gang & Zhu, Xin & Liu, Wenyi & Lei, Jing, 2022. "Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant," Energy, Elsevier, vol. 246(C).
    13. Vojtěch Turek & Bohuslav Kilkovský & Ján Daxner & Dominika Babička Fialová & Zdeněk Jegla, 2024. "Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review," Energies, MDPI, vol. 17(9), pages 1-27, April.
    14. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    15. Liya Ren & Huaixin Wang, 2019. "Parametric Optimization and Thermodynamic Performance Comparison of Organic Trans-Critical Cycle, Steam Flash Cycle, and Steam Dual-Pressure Cycle for Waste Heat Recovery," Energies, MDPI, vol. 12(24), pages 1-22, December.
    16. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    17. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    18. Igor Maksimov & Vladimir Kindra & Andrey Vegera & Andrey Rogalev & Nikolay Rogalev, 2024. "Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 17(24), pages 1-27, December.
    19. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.
    20. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.