IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p537-551.html
   My bibliography  Save this article

Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes

Author

Listed:
  • Mazzi, N.
  • Rech, S.
  • Lazzaretto, A.

Abstract

ORCs (Organic Rankine Cycles) represent an effective option to exploit low grade heat fluxes, the characteristics of which not only affect design, but also performance and stability during operation.

Suggested Citation

  • Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:537-551
    DOI: 10.1016/j.energy.2015.07.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2014. "New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles," Energy, Elsevier, vol. 77(C), pages 447-459.
    2. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    3. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    4. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    5. Zhang, Jianhua & Zhou, Yeli & Wang, Rui & Xu, Jinliang & Fang, Fang, 2014. "Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems," Energy, Elsevier, vol. 66(C), pages 128-138.
    6. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    7. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    8. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    9. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    10. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    11. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    12. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    13. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    2. Rech, Sergio & Finco, Elisa & Lazzaretto, Andrea, 2020. "A multicriteria approach to choose the best renewable refrigeration system for food preservation," Renewable Energy, Elsevier, vol. 154(C), pages 368-384.
    3. Jolevski, Danijel & Bego, Ozren & Sarajcev, Petar, 2017. "Control structure design and dynamics modelling of the organic Rankine cycle system," Energy, Elsevier, vol. 121(C), pages 193-204.
    4. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & Wang, Rui & Bian, Xingyan & He, Zhaoxian & Tian, Hua & Shu, Gequn, 2023. "Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cooling water," Energy, Elsevier, vol. 263(PE).
    5. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    6. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    7. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    8. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    9. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    10. Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
    11. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    12. Marchionni, Matteo & Bianchi, Giuseppe & Karvountzis-Kontakiotis, Apostolos & Pesyridis, Apostolos & Tassou, Savvas A., 2018. "An appraisal of proportional integral control strategies for small scale waste heat to power conversion units based on Organic Rankine Cycles," Energy, Elsevier, vol. 163(C), pages 1062-1076.
    13. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    14. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
    16. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    17. Gleinser, Moritz & Wieland, Christoph & Spliethoff, Hartmut, 2018. "Batch evaporation power cycle: Influence of thermal inertia and residence time," Energy, Elsevier, vol. 157(C), pages 1090-1101.
    18. Emanuele Nadalon & Ronelly De Souza & Melchiorre Casisi & Mauro Reini, 2023. "Part-Load Energy Performance Assessment of a Pumped Thermal Energy Storage System for an Energy Community," Energies, MDPI, vol. 16(15), pages 1-30, July.
    19. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Zhang, Yonghao & Shu, Gequn, 2022. "Reducing the operational fluctuation via splitting CO2 transcritical power cycle in engine waste heat recovery," Energy, Elsevier, vol. 252(C).
    20. Cheng, Ziyang & Wang, Jiangfeng & Yang, Peijun & Wang, Yaxiong & Chen, Gang & Zhao, Pan & Dai, Yiping, 2022. "Comparison of control strategies and dynamic behaviour analysis of a Kalina cycle driven by a low-grade heat source," Energy, Elsevier, vol. 242(C).
    21. Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2019. "Supercritical CO2 and air Brayton-Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation," Energy, Elsevier, vol. 168(C), pages 295-309.
    22. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2016. "Predicting the optimum design of single stage axial expanders in ORC systems: Is there a single efficiency map for different working fluids?," Applied Energy, Elsevier, vol. 167(C), pages 44-58.
    23. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    2. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    3. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    4. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    5. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    6. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    7. Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
    8. Hernandez, Andres & Desideri, Adriano & Gusev, Sergei & Ionescu, Clara M. & Den Broek, Martijn Van & Quoilin, Sylvain & Lemort, Vincent & De Keyser, Robin, 2017. "Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system," Applied Energy, Elsevier, vol. 203(C), pages 549-559.
    9. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    10. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    11. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    12. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    14. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    15. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    16. Desideri, Adriano & Hernandez, Andres & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Steady-state and dynamic validation of a small-scale waste heat recovery system using the ThermoCycle Modelica library," Energy, Elsevier, vol. 115(P1), pages 684-696.
    17. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    18. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    19. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    20. Zhang, Jianhua & Lin, Mingming & Fang, Fang & Xu, Jinliang & Li, Kang, 2016. "Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model," Energy, Elsevier, vol. 107(C), pages 773-783.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:537-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.