IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v107y2016icp773-783.html
   My bibliography  Save this article

Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model

Author

Listed:
  • Zhang, Jianhua
  • Lin, Mingming
  • Fang, Fang
  • Xu, Jinliang
  • Li, Kang

Abstract

This paper investigates gain scheduling control strategy for ORC (organic Rankine cycle) based WHECSs (waste heat energy conversion systems) over a wide range of operating conditions. A low order physical model is first developed for ORC based WHECSs. Then the nonlinear dynamics of the WHECS are formulated by an affine LPV (linear parameter varying) system. The generated offline LPV system is characterized by dependence on the mass flow rate and temperature of the waste heat at the inlet of the evaporator. The gain scheduling controller based on the LPV model ensures that the WHECS can obtain satisfactory performance over a wide range operating region. The simulation results demonstrate the effectiveness of the proposed controller.

Suggested Citation

  • Zhang, Jianhua & Lin, Mingming & Fang, Fang & Xu, Jinliang & Li, Kang, 2016. "Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model," Energy, Elsevier, vol. 107(C), pages 773-783.
  • Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:773-783
    DOI: 10.1016/j.energy.2016.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    2. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    5. Zhang, Jianhua & Zhou, Yeli & Wang, Rui & Xu, Jinliang & Fang, Fang, 2014. "Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems," Energy, Elsevier, vol. 66(C), pages 128-138.
    6. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    7. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    8. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    9. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    10. Zhang, Jianhua & Zhou, Yeli & Li, Ying & Hou, Guolian & Fang, Fang, 2013. "Generalized predictive control applied in waste heat recovery power plants," Applied Energy, Elsevier, vol. 102(C), pages 320-326.
    11. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    12. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    2. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    3. Ying Zhang & Li Zhao & Shuai Deng & Ming Li & Yali Liu & Qiongfen Yu & Mengxing Li, 2022. "Novel Off-Design Operation Maps Showing Functionality Limitations of Organic Rankine Cycle Validated by Experiments," Energies, MDPI, vol. 15(21), pages 1-19, November.
    4. Lin, Runze & Luo, Yangyang & Wu, Xialai & Chen, Junghui & Huang, Biao & Su, Hongye & Xie, Lei, 2024. "Surrogate empowered Sim2Real transfer of deep reinforcement learning for ORC superheat control," Applied Energy, Elsevier, vol. 356(C).
    5. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    6. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    7. Hernandez, Andres & Desideri, Adriano & Gusev, Sergei & Ionescu, Clara M. & Den Broek, Martijn Van & Quoilin, Sylvain & Lemort, Vincent & De Keyser, Robin, 2017. "Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system," Applied Energy, Elsevier, vol. 203(C), pages 549-559.
    8. Wu, Xialai & Chen, Junghui & Xie, Lei, 2019. "Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies," Energy, Elsevier, vol. 180(C), pages 520-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    2. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    3. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    6. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    7. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    8. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    9. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    10. Sanjay Mukherjee & Abhishek Asthana & Martin Howarth & Jahedul Islam Chowdhury, 2020. "Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry," Energies, MDPI, vol. 13(23), pages 1-26, December.
    11. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    12. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    13. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    14. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    15. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    16. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    17. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    18. Fu, Ben-Ran & Hsu, Sung-Wei & Liu, Chih-Hsi & Liu, Yu-Ching, 2014. "Statistical analysis of patent data relating to the organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 986-994.
    19. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    20. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:107:y:2016:i:c:p:773-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.