IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp145-170.html
   My bibliography  Save this article

A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications

Author

Listed:
  • Xu, Bin
  • Rathod, Dhruvang
  • Yebi, Adamu
  • Filipi, Zoran
  • Onori, Simona
  • Hoffman, Mark

Abstract

Effective recovery of heavy-duty vehicle waste heat is a key solution toward meeting the increasingly stringent fuel economy and CO2 emission standards. Different from previous publications, this paper presents a preliminary introduction of organic Rankine cycle waste heat recovery (ORC-WHR) in heavy-duty diesel (HDD) vehicle applications in the past decade. It presents a wide range of topics in the HDD vehicle ORC-WHR system development, including system architecture evaluation, heat exchanger selection, expander selection, working fluid selection, power optimization, control strategy evaluation, simulation and experimental work overview, and limiting factors. In the system architecture selection, the tradeoff between fuel savings and system complexity dominates. In the heat exchanger design, besides the heat exchanger efficiency, transient evaporator response is critical factor for the system control and performance. The expander type and configuration is closely coupled to the expander power output type (i.e. electricity or mechanical power). WHR power production is most sensitive to working fluid mass flow rate, with less sensitivities to expander speed and condenser coolant mass flow rate. The integration of ORC-WHR control with engine control shows potential to improve the waste heat recovery system performance. The simulation studies predict higher power recovery levels than that in experimental work (0–60 kW vs. 0–14 kW), which could result from the large number of heat resources, optimistic expander and pump efficiencies and neglected heat losses in the simulations.

Suggested Citation

  • Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:145-170
    DOI: 10.1016/j.rser.2019.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119301455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Gequn & Zhao, Mingru & Tian, Hua & Huo, Yongzhan & Zhu, Weijie, 2016. "Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine," Energy, Elsevier, vol. 115(P1), pages 756-769.
    2. Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
    3. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    4. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    5. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    6. Eyerer, Sebastian & Wieland, Christoph & Vandersickel, Annelies & Spliethoff, Hartmut, 2016. "Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization," Energy, Elsevier, vol. 103(C), pages 660-671.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    9. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    10. Horst, Tilmann Abbe & Rottengruber, Hermann-Sebastian & Seifert, Marco & Ringler, Jürgen, 2013. "Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems," Applied Energy, Elsevier, vol. 105(C), pages 293-303.
    11. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    12. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    13. Pandiyarajan, V. & Chinna Pandian, M. & Malan, E. & Velraj, R. & Seeniraj, R.V., 2011. "Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system," Applied Energy, Elsevier, vol. 88(1), pages 77-87, January.
    14. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    15. Preißinger, Markus & Schwöbel, Johannes A.H. & Klamt, Andreas & Brüggemann, Dieter, 2017. "Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks," Applied Energy, Elsevier, vol. 206(C), pages 887-899.
    16. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    17. Victor, Rachel Anne & Kim, Jin-Kuk & Smith, Robin, 2013. "Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles," Energy, Elsevier, vol. 55(C), pages 114-126.
    18. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    19. Grelet, Vincent & Reiche, Thomas & Lemort, Vincent & Nadri, Madiha & Dufour, Pascal, 2016. "Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks," Applied Energy, Elsevier, vol. 165(C), pages 878-892.
    20. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    21. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    22. Li, Jing & Pei, Gang & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2012. "Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures," Energy, Elsevier, vol. 38(1), pages 85-95.
    23. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    24. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    25. Xu, Bin & Rathod, Dhruvang & Kulkarni, Shreyas & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2017. "Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 205(C), pages 260-279.
    26. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    27. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    28. Andres Hernandez & Adriano Desideri & Clara Ionescu & Robin De Keyser & Vincent Lemort & Sylvain Quoilin, 2016. "Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control," Energies, MDPI, vol. 9(5), pages 1-18, May.
    29. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    30. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    31. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    32. Feru, Emanuel & de Jager, Bram & Willems, Frank & Steinbuch, Maarten, 2014. "Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines," Applied Energy, Elsevier, vol. 133(C), pages 183-196.
    33. Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
    34. Emanuel Feru & Frank Willems & Bram De Jager & Maarten Steinbuch, 2014. "Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines," Energies, MDPI, vol. 7(10), pages 1-22, October.
    35. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).
    5. Vaupel, Yannic & Huster, Wolfgang R. & Mhamdi, Adel & Mitsos, Alexander, 2021. "Optimal operating policies for organic Rankine cycles for waste heat recovery under transient conditions," Energy, Elsevier, vol. 224(C).
    6. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    7. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    8. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    9. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    10. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    11. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    12. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    13. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    14. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    15. Wen Zhang & Enhua Wang & Fanxiao Meng & Fujun Zhang & Changlu Zhao, 2020. "Closed-Loop PI Control of an Organic Rankine Cycle for Engine Exhaust Heat Recovery," Energies, MDPI, vol. 13(15), pages 1-20, July.
    16. Hernandez, Andres & Desideri, Adriano & Gusev, Sergei & Ionescu, Clara M. & Den Broek, Martijn Van & Quoilin, Sylvain & Lemort, Vincent & De Keyser, Robin, 2017. "Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system," Applied Energy, Elsevier, vol. 203(C), pages 549-559.
    17. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    18. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    19. Yang, Fufang & Yang, Fubin & Liu, Qiang & Chu, Qingfu & Yang, Zhen & Duan, Yuanyuan, 2022. "Thermodynamic analysis of working fluids: What is the highest performance of the sub- and trans-critical organic Rankine cycles?," Energy, Elsevier, vol. 241(C).
    20. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:145-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.