IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1397-d221861.html
   My bibliography  Save this article

Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine

Author

Listed:
  • Amin Mahmoudzadeh Andwari

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, London UB8 3PH, UK
    Vehicle, Fuel and Environment Research Institute (VFERI), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439956191, Iran)

  • Apostolos Pesyridis

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, London UB8 3PH, UK)

  • Vahid Esfahanian

    (Vehicle, Fuel and Environment Research Institute (VFERI), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439956191, Iran)

  • Ali Salavati-Zadeh

    (Niroo Research Institute (NRI), Tehran 1468613113, Iran)

  • Alireza Hajialimohammadi

    (Mechanical Engineering Department, Semnan University, Semnan 3513119111, Iran)

Abstract

In the present study, the effects of Organic Rankine Cycle (ORC) and turbo-compound (T/C) system integration on a heavy-duty diesel engine (HDDE) is investigated. An inline six-cylinder turbocharged 11.5 liter compression ignition (CI) engine employing two waste heat recovery (WHR) strategies is modelled, simulated, and analyzed through a 1-D engine code called GT-Power. The WHR systems are evaluated by their ability to utilize the exhaust excess energy at the downstream of the primary turbocharger turbine, resulting in brake specific fuel consumption (BSFC) reduction. This excess energy is dependent on the mass flow rate and the temperature of engine exhaust gas. However, this energy varies with engine operational conditions, such as speed, load, etc. Therefore, the investigation is carried out at six engine major operating conditions consisting engine idling, minimum BFSC, part load, maximum torque, maximum power, and maximum exhaust flow rate. The results for the ORC and T/C systems indicated a 4.8% and 2.3% total average reduction in BSFC and also maximum thermal efficiencies of 8% and 10%, respectively. Unlike the ORC system, the T/C system was modelled as a secondary turbine arrangement, instead of an independent unit. This in turn deteriorated BSFC by 5.5%, mostly during low speed operation, due to the increased exhaust backpressure. It was further concluded that the T/C system performed superiorly to the ORC counterpart during top end engine speeds, however. The ORC presented a balanced and consistent operation across the engines speed and load range.

Suggested Citation

  • Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1397-:d:221861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    2. Matthew Read & Ian Smith & Nikola Stosic & Ahmed Kovacevic, 2016. "Comparison of Organic Rankine Cycle Systems under Varying Conditions Using Turbine and Twin-Screw Expanders," Energies, MDPI, vol. 9(8), pages 1-20, August.
    3. Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
    4. Oyeniyi A. Oyewunmi & Christos N. Markides, 2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System," Energies, MDPI, vol. 9(6), pages 1-21, June.
    5. Piotr Kolasiński & Przemysław Błasiak & Józef Rak, 2016. "Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System," Energies, MDPI, vol. 9(8), pages 1-15, August.
    6. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    7. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    8. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Mohd Farid Muhamad Said, 2019. "Combustion and Emission Enhancement of a Spark Ignition Two-Stroke Cycle Engine Utilizing Internal and External Exhaust Gas Recirculation Approach at Low-Load Operation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    9. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.
    10. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    11. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    12. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    13. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    14. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    15. Karvountzis-Kontakiotis, Apostolos & Andwari, Amin Mahmoudzadeh & Pesyridis, Apostolos & Russo, Salvatore & Tuccillo, Raffaele & Esfahanian, Vahid, 2018. "Application of Micro Gas Turbine in Range-Extended Electric Vehicles," Energy, Elsevier, vol. 147(C), pages 351-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Orjuela-Abril & Ana Torregroza-Espinosa & Jorge Duarte-Forero, 2023. "Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    2. Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    2. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    3. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    4. Guillermo Valencia & Armando Fontalvo & Yulineth Cárdenas & Jorge Duarte & Cesar Isaza, 2019. "Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC," Energies, MDPI, vol. 12(12), pages 1-22, June.
    5. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    6. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    7. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    8. Juan J. García-Pabón & Dario Méndez-Méndez & Juan M. Belman-Flores & Juan M. Barroso-Maldonado & Ali Khosravi, 2021. "A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    9. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    11. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    12. Chen, Tianyu & Shu, Gequn & Tian, Hua & Zhao, Tingting & Zhang, Hongfei & Zhang, Zhao, 2020. "Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery," Applied Energy, Elsevier, vol. 266(C).
    13. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Huang, Guangdai & Li, Xiaoya & Chen, Tianyu & Li, Ligeng, 2018. "Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery," Energy, Elsevier, vol. 165(PB), pages 1149-1159.
    14. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Imran, Muhammad & Haglind, Fredrik & Lemort, Vincent & Meroni, Andrea, 2019. "Optimization of organic rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system," Energy, Elsevier, vol. 180(C), pages 229-241.
    16. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    17. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
    18. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    19. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    20. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1397-:d:221861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.