IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4374-d1157678.html
   My bibliography  Save this article

Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications

Author

Listed:
  • Apostolos Pesyridis

    (Department of Mechanical and Aerospace Engineering, Brunel University, London UB8 3PH, UK)

  • Muhammad Suleman Asif

    (Department of Mechanical and Aerospace Engineering, Brunel University, London UB8 3PH, UK)

  • Sadegh Mehranfar

    (Machine and Vehicle Design (MVD), Materials and Mechanical Engineering, Faculty of Technology, University of Oulu, FI-90014 Oulu, Finland)

  • Amin Mahmoudzadeh Andwari

    (Department of Mechanical and Aerospace Engineering, Brunel University, London UB8 3PH, UK
    Machine and Vehicle Design (MVD), Materials and Mechanical Engineering, Faculty of Technology, University of Oulu, FI-90014 Oulu, Finland)

  • Ayat Gharehghani

    (School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran)

  • Thanos Megaritis

    (Department of Mechanical and Aerospace Engineering, Brunel University, London UB8 3PH, UK)

Abstract

Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and development departments in this area. Internal combustion engines (ICEs) can exploit only about 15–40% of chemical energy to produce work effectively, while most of the fuel energy is wasted through exhaust gases and coolant. Although there is a significant amount of wasted energy in thermal processes, the quality of that energy is low owing to its low temperature and provides limited potential for power generation consequently. Waste heat recovery (WHR) systems take advantage of the available waste heat for producing power by utilizing heat energy lost to the surroundings at no additional fuel costs. Among all available waste heat sources in the engine, exhaust gas is the most potent candidate for WHR due to its high level of exergy. Regarding WHR technologies, the well-known Rankine cycles are considered the most promising candidate for improving ICE thermal efficiency. This study is carried out for a six-cylinder marine diesel engine model operating with a WHR organic Rankine cycle (ORC) model that utilizes engine exhaust energy as input. Using expander inlet conditions in the ORC model, preliminary turbine design characteristics are calculated. For this mean-line model, a MATLAB code has been developed. In off-design expander analysis, performance maps are created for different speed and pressure ratios. Results are produced by integrating the polynomial correlations between all of these parameters into the ORC model. ORC efficiency varies in design and off-design conditions which are due to changes in expander input conditions and, consequently, net power output. In this study, ORC efficiency varies from a minimum of 6% to a maximum of 12.7%. ORC efficiency performance is also affected by certain variables such as the coolant flow rate, heat exchanger’s performance etc. It is calculated that with the increase of coolant flow rate, ORC efficiency increases due to the higher turbine work output that is made possible, and the condensing pressure decreases. It is calculated that ORC can improve engine Brake Specific Fuel Consumption (BSFC) from a minimum of 2.9% to a maximum of 5.1%, corresponding to different engine operating points. Thus, decreasing overall fuel consumption shows a positive effect on engine performance. It can also increase engine power output by up to 5.42% if so required for applications where this may be deemed necessary and where an appropriate mechanical connection is made between the engine shaft and the expander shaft. The ORC analysis uses a bespoke expander design methodology and couples it to an ORC design architecture method to provide an important methodology for high-efficiency marine diesel engine systems that can extend well beyond the marine sector and into the broader ORC WHR field and are applicable to many industries (as detailed in the Introduction section of this paper).

Suggested Citation

  • Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4374-:d:1157678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongchao Sun & Pengyuan Sun & Zhixiang Zhang & Shuchao Zhang & Jian Zhao & Ning Mei, 2022. "Performance Prediction for a Marine Diesel Engine Waste Heat Absorption Refrigeration System," Energies, MDPI, vol. 15(19), pages 1-22, September.
    2. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    3. Ning Yang & Xiaowen Deng & Bin Liu & Liwei Li & Yuan Li & Peng Li & Miao Tang & Lin Wu, 2022. "Combustion Performance and Emission Characteristics of Marine Engine Burning with Different Biodiesel," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    5. Antonio Mariani & Biagio Morrone & Davide Laiso & Maria Vittoria Prati & Andrea Unich, 2022. "Waste Heat Recovery in a Compression Ignition Engine for Marine Application Using a Rankine Cycle Operating with an Innovative Organic Working Fluid," Energies, MDPI, vol. 15(21), pages 1-18, October.
    6. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    7. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    8. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    9. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2012. "Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles," Applied Energy, Elsevier, vol. 97(C), pages 601-608.
    10. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    2. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    3. Zhang, H.G. & Wang, E.H. & Fan, B.Y., 2013. "A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 1504-1513.
    4. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    5. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    6. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    7. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    8. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    9. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    10. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    11. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.
    12. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    13. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    15. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    16. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    17. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    18. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    19. Zhang, Jianhua & Lin, Mingming & Chen, Junghui & Xu, Jinliang & Li, Kang, 2017. "PLS-based multi-loop robust H2 control for improvement of operating efficiency of waste heat energy conversion systems with organic Rankine cycle," Energy, Elsevier, vol. 123(C), pages 460-472.
    20. Athanasios G. Vallis & Theodoros C. Zannis & Elias A. Yfantis & Efthimios G. Pariotis & John S. Katsanis & Konstantina D. Asimakopoulou, 2020. "Thermo-Economic Study of a Regenerative Dual-Loop ORC System Coupled to the Main Diesel Engines of a General Support Vessel," Energies, MDPI, vol. 13(11), pages 1-45, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4374-:d:1157678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.